Derivatives
Defn. Let $f: A\left(c \mathbb{R}^{n}\right) \longrightarrow \mathbb{R}^{m}$. Suppose that A contains a neighbourhood (nbhd) of some point $x \in A$. Then the directional derivative of f at x with respect to u fixed vector u is defined by

$$
f^{\prime}(x ; u):=\lim _{t \rightarrow 0} \frac{f(x+t u)-f(x)}{t}
$$

provided this limit exists.

Example

$$
\begin{aligned}
& f: \mathbb{R}^{2} \longrightarrow \mathbb{R} \\
& f(x, y)=x+y+x y
\end{aligned}
$$

The D.D. of f at $x=\left(x_{1}, x_{2}\right)$ with respect to $u=(1,0)$.

$$
\begin{aligned}
& f^{\prime}(x ; u)=\lim _{t \rightarrow 0} \frac{f(x+t u)-f(x)}{t} \\
&=\lim _{t \rightarrow 0} \frac{f\left(x_{1}^{\prime} t, x_{2}^{\prime}\right)-f\left(x_{1}, x_{2}\right)}{t} \\
&=\lim _{t \rightarrow 0} \frac{x_{1}+t+x_{2}+\left(x_{1}+t\right) x_{2}}{-\left(x_{1}+x_{2}+x_{1} x_{2}\right)} \\
& t \lim _{t \rightarrow 0} \frac{t+t x_{2}}{t}=1+x_{2}
\end{aligned}
$$

Derivative of a real-valued function
Let $f: A\left(c \mathbb{R}^{n}\right) \longrightarrow \mathbb{R}$, and let A contain a nbhd of a point $x \in A$. Then f is said to be differentiable at x if J a number λ such that

\[

\]

In the event that (*) holds, then the unique (why?) number λ is called the derivative of f at x and is denoted
by $f^{\prime}(x)$.
Generalized derivative
Defn. Let $f: A\left(C \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{m}$, and let A contain a nbhd of a point $x \in A$. We say f is differentiable at x if \exists an $m \times n$ matrix B such that
$\frac{f(x+h)-f(x)-B \cdot h}{|h|} \rightarrow 0 \quad \begin{aligned} & \text { as } h \rightarrow 0 \\ & L(*)\end{aligned}$
If (*) holds, the unique (why?) matrix B is called the derivative of f at x and is denoted
by $D f^{2}(x)$.

$$
\begin{array}{llll}
B \cdot h \\
\downarrow
\end{array}
$$

linear map
Why unique?
Suppose that C is another $m \times n$ matrix satisfying (*).
Then:

$$
\begin{aligned}
\frac{f(x+h)-f(x)-C \cdot h}{|h|} & \rightarrow 0, \text { as } \\
& \begin{aligned}
& h \rightarrow 0 . \\
&(* *)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& (*)-(* *) \Rightarrow \\
& \frac{(C-B) h}{|h|} \rightarrow 0 \text { as } h \rightarrow 0 \\
& L(A)
\end{aligned}
$$

Then (A) is equivalent to: $\lim _{t \rightarrow 0} \frac{(C-B)(t u)^{\prime s}}{|t|}$, where u is a unit vector and $n=t u$.

$$
\begin{aligned}
& \Rightarrow(C-B)^{v} u=0 \\
& \left(\begin{array}{l}
\lim _{t \rightarrow 0} \frac{t(C-B)(u)}{1 t 1} \\
\quad=\lim _{t \rightarrow 0^{+}} \frac{t}{t}(C-B) u \\
\quad=\lim _{t \rightarrow 0^{-}} \frac{t}{-t}(C-B) u
\end{array}\right)
\end{aligned}
$$

But since the choice of u is arbitrary, we have

$$
C=B
$$

Example
Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be defined by

$$
f(x)=B \cdot x+b, b \in \mathbb{R}^{n} \text {. }
$$

Then for each $y \in \mathbb{R}^{n}$, we have

$$
\lim _{h \rightarrow 0} \frac{f(y+h)-f(y)-B \cdot h}{|h|}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{B \cdot(y+h)+b-(B \cdot y+b)-B \cdot h}{|h|} \\
& =0
\end{aligned}
$$

\Rightarrow By definition,

$$
D f(y)=B
$$

Theorem. Net $f: A\left(C \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{m}$ If $D f(x)$ exists, then $f^{\prime}(x ; u)$ exists at each u and $\quad f^{\prime}(x ; u)=D f(x) \cdot u$. Proof. Exercise

Does the converse of the above theorem hold?

No.
Example.

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\begin{aligned}
& f: \mathbb{R}^{2} \longrightarrow \mathbb{R}, \\
& f(x, y)=\left\{\begin{array}{cc}
\frac{x^{2} y}{x^{4}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\
0, & \text { if }(x, y)=(0,0)
\end{array}\right.
\end{aligned}
$$

Consider

$$
\begin{aligned}
& \text { Consider } \\
& f^{\prime}(0 ; u)=\lim _{t \rightarrow 0} \frac{f(0+t u)-f(0)}{t} \\
& \text { net } u=\left(u_{1}, u_{2}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
& \text { Then } \\
& f^{\prime}(0 ; u)=\lim _{t \rightarrow 0} \frac{f\left(t u_{1}, t u_{2}\right)-f(0,0)}{t}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
& =\lim _{t \rightarrow 0}\left(\frac{t^{3} u_{1}^{2} u_{2}}{t^{4} u_{1}^{4}+t^{2} u_{2}^{2}}\right.
\end{array}\right)
$$

$f^{\prime}(0 ; u)$ exists for all $u \neq 0$.
However, Df(0) does not exist.
For if it does, then $D f(0)$ is a 1×2 matrix $[a, b]$

$$
\begin{aligned}
\Rightarrow f^{\prime}(0, u)= & D f(0) \cdot u \\
& =[a, b]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \\
& =a u_{1}+b u_{2}
\end{aligned}
$$

which is a linear function

Theorem, let $f: A\left(\subset \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{m}$.
If $D f(x)$ exists, then f is continuous at x.

Proof
For $h \neq 0$ and near 0, we write

$$
\begin{aligned}
& \frac{f(x+h)-f(x)}{11}(*) \\
& |h|\left[\frac{f(x+h)-f(x)-D f(x) h}{|h|}\right] \\
& +D f(x) h \\
& \Rightarrow \lim _{h \rightarrow 0} f(x+h)-f(x) \\
& =\lim _{h \rightarrow 0}|h|[\cdots]+0 \\
& =0
\end{aligned}
$$

$$
\Rightarrow \lim _{h \rightarrow 0} f(x+h)=f(x)
$$

$\Rightarrow f$ is continuous at x.

$$
\begin{aligned}
& x=\left(x_{1}, \cdots x_{n}\right) \\
& y=\left(y_{1}, \cdots y_{n}\right) \\
& \|x-y\|_{2}=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}} \\
& \quad\|x\|_{2}=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}
\end{aligned}
$$

$\left\|\|_{\infty}\right.$ is the sup norm

$$
\begin{aligned}
& \left\|\|_{\infty}\right. \text { is the } \\
& \xrightarrow{\|x\|_{\infty}}=\begin{array}{l}
\max \left\{\left|x_{1}\right|, \ldots,|x n|\right\} \\
\text { preferred norm }
\end{array}
\end{aligned}
$$

$$
\xrightarrow[\|x\|_{k}=]{\sqrt[k]{\left(x x_{1}\right)^{k}+\cdots\left(x_{n}\right)^{k}}}
$$

$$
d_{2}(x, y)=\|x-y\|_{2}
$$

$$
d_{\infty}(x, y)=\|x-y\|_{\infty}
$$

$$
\begin{aligned}
& B_{d_{2}}^{x \in \mathbb{R}^{2}} \\
& B_{d_{\infty}}(x, r)=
\end{aligned}
$$

d_{2} induces the standard topology in \mathbb{R}^{n}, while d_{∞} also induces the same topology, This is because the metric spaces are equivalent.

c

Unless mentioned otherwise, $|h|$ - sup norm on h
Def. Let $f: A\left(c \mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ Then the $j^{\text {th }}$ partial derivative of at x (denoted by $\left.D_{j} f(x)\right)$ is defined by:

$$
D_{j} f(x):=f^{\prime}\left(x ; e_{j}\right)
$$

Theorem Let $f: A\left(c \mathbb{R}^{n}\right) \rightarrow \mathbb{R}$.
If $D f(x) \begin{gathered}\text { exists, } \\ \text { column vector }\end{gathered}$ then

$$
D f(x)=\left[D_{1} f(x), \ldots, D_{m f f u}\right] \text {. column vector . }
$$

Proof. Exercise. (Follows directly)

Theorem . Let $f: A\left(C \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{m}$, and let A contain a nbhd of the point x. Let $f_{i}: A \rightarrow \mathbb{R}$ be the $i^{\text {th }}$ component function of f so that

$$
f(x)=\left[\begin{array}{l}
f_{1}(x) \\
\vdots \\
f_{n}(x)
\end{array}\right]
$$

(a) f is differentiable at x \Rightarrow each f_{i} is differentiable at x.
(b) If $D f(x)$ exists, then $D f(x)=\left[\begin{array}{c}D f_{1}(x) \\ \vdots \\ D f_{m}(x)\end{array}\right]$, where the $(i j)^{\text {th }}$ entry of $D f(x)$ is given by $D_{j} f_{i}(x)$.

Proof. Exercise (Follows directly)
Defn. Let $f: A\left(c \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{m}$. If the partial derivatives of the component functions f_{i} of f exist at x, then the matrix

$$
\begin{aligned}
& \text { he matrix } \\
& J f(x)=\left[\begin{array}{ccc}
D_{1} f_{1}(x) & \cdots & D_{n} f_{!}(x) \\
\vdots & & \vdots \\
D_{i} f_{m}(x) & \cdots & D_{n} f_{m}(x)
\end{array}\right]
\end{aligned}
$$

is called the Jacobian matrix of f at x.
Note:
If $D f(x)$ exists, then

$$
D f(x)=J f(x)
$$

Continuously differentiable functions
Theorem: let $A \subset \mathbb{R}^{n}$ be open. Suppose that $D_{j} f_{i}(x)$ exists at each $x \in A$ and the Dj pi are continuous on A.
Then $D f(x)$ exists at each $x \in A$.
Defy. A function f as in the hypothesis of the above theorem is said to be continuously differentiable on
A. (i.e. of class C^{\prime} on A).

Defn. Let $f: A\left(c \mathbb{R}^{n}\right) \longrightarrow \mathbb{R}^{m}$.
If the partial derivatives of $f i$ of all orders $\leqslant \gamma$ exist and are continuous on A, then we say f is of class C^{γ} on A.

$$
\left(\begin{array}{cc}
D_{j} D_{i} f(x), & D_{\kappa} D_{j} D_{i} f(x) \\
2^{\text {d }} \text { order } & 3^{* d} \text { order }
\end{array}\right)
$$

Proof
It suffices to show that each component of f is diff (i.e. Di lx) exists for each i).

This means that we can restrict our attention to $f: A \rightarrow \mathbb{R}$.
We are given that $D_{j} f(x)$ exists and is continuous for $|x-y|<\varepsilon$, and we wish to show that Df(y) exists. ($y \in A$).
Consider $h \in \mathbb{R}^{m}$ with $0<|h|<\varepsilon$. $\left(h=\left(h_{1}, \ldots, h_{m}\right)\right)$, and the following sequence.

$$
\begin{aligned}
& P_{0}=y \\
& P_{1}=y+h_{1} e_{1} \\
& \vdots \\
& P_{m}=y+h_{1} e_{1}+\cdots+h_{m} e_{m}=y+h
\end{aligned}
$$

Note that each P_{i} belongs to the closed cube $C(y:|h|)=C$ centered at y and radius $|h|$. (i.e. the ball centered at y norm).

Now,

$$
\begin{aligned}
& \text { Now, } \\
& \underline{f(y+h)-f(y)}=\sum_{j=1}^{m}\left(f\left(P_{j}\right)-f\left(P_{j-1}\right)\right)
\end{aligned}
$$

For a fixed j, we define

$$
\phi(t)=f\left(P_{j-1}+t e_{j}\right)^{\vee}
$$

As t varies over $\left[0, h_{j}\right]$, $P_{j-1}+$ te j ranges from P_{j-1} to P_{j} Note that this range lies in C $\Rightarrow \phi$ is defined on an open interval containing $[0, h j]$.
As t varies, since only the $j^{\text {th }}$ component $P_{j-1}+t e_{j}$ varies, it follows that $\frac{\text { Dif exists }}{\text { Di }}$ at each point of A.
$\overrightarrow{\text { and }}$ is differentiable defined for all t 1 in an operentiable interval about [0, hi].
the
$\Rightarrow B_{y}{ }^{\text {the Mean Value Theorem, }}$ we have: (ϕ is cont and diff in

$$
\begin{aligned}
& \phi\left(h_{j}\right)-\phi(0)=\phi^{\prime}\left(c_{j}\right) h_{j}, \text { where } \\
& c_{j} \in\left(0_{j} h_{j}\right)
\end{aligned} \quad \begin{aligned}
&= \\
& \Rightarrow\left(P_{j}\right)-f\left(P_{j-1}\right)=D_{j} f\left(q_{j}\right) h_{j}, \\
& L(* *)
\end{aligned}
$$

Where $Q_{j}=\frac{P_{j}-1}{T}+C_{j} e_{j}$ (Note that this lies in the line segment joining P_{j-1} to $\left.P_{j}\right) \subset C$.
Furthermore, (**) holds for $h_{j} \neq 0$, and also trivially for $h_{j}=0$, for any $q_{j} \in C$.

By applying (**), we rewrite (*), to get:

$$
\begin{aligned}
& (*) \text {, to get : } \\
& f(y+h)-f(y)=\sum_{j=1}^{n} D_{j} f\left(q_{j}\right) h_{j}, \\
& \longrightarrow(* * *)
\end{aligned}
$$

for each $q_{j} \in C$
Now, let $B=\left[D_{1} f(y), \ldots, D_{m} f(y)\right]$
Then

$$
\begin{aligned}
& \text { Then } \\
& B \cdot h=\sum_{j=1}^{m} D_{j} f(y) h_{j},
\end{aligned}
$$

Using (***), we have

$$
\begin{aligned}
& \frac{f(y+h)-f(y)-B \cdot h}{|h|}=\sum_{j=1}^{m} \frac{\left[D_{j} f\left(q_{j}\right)-D_{j} f(y)\right]}{|h|}
\end{aligned}
$$

Allow $h \rightarrow 0$, we have

$$
\begin{aligned}
& O_{j j} \rightarrow y(\text { since Cis centered } \\
&\left.\underset{D f(y)}{ } \text { at } \begin{array}{c}
\text { at }
\end{array}\right) \\
& \Rightarrow \lim _{h \rightarrow 0} f(y+h)^{\prime \prime}-f(y)-B \cdot h \\
&|h|
\end{aligned} \longrightarrow 0 \text { : }
$$

Theorem . Ret $f: A\left(\subset \mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ be a C^{2} function. Then for each $x \in X$, we have:

$$
D_{k} D_{j} f(x)=D_{j} D_{k} f(x)
$$

Proof.
Since the partial derivative is computed by letting all other variables other than
x_{k} and x_{j} to remain constant, it suffices to consider the case when $n=2$.
So let $f: A^{u^{\mathbb{R}^{2}}} \rightarrow \mathbb{R}$ be C^{2}.
net $Q=[a, a+h] \times[b, b+k]$ be a rectangle in A.
Define

$$
\begin{aligned}
& \lambda(h, k)=f(a, b)-f(a+h, b) \\
&-f(a, b+k)+f(a+h, b+k) \\
& b+k+- \\
& b+\frac{1 / \vdots!}{a}+ \\
& \hline
\end{aligned}
$$

Claim. J points $p, q \in Q$ such that
(i) $\lambda(h, k)=D_{2} D_{1} f(p) \cdot h k$
(ii) $\overline{\lambda(h, k)}=D_{1} D_{2} f(q) \cdot h k$

It suffices to prove the first assertion (i ' as the second would then follow by symmetry.
let

$$
\phi(s)=\underline{f(s, b+k)-f(s, b)}
$$

Then $\frac{\phi(a+h)-\phi(a)}{}=\lambda(h, k)$
Since D,f exists in A, ϕ is differentiable in an open interval containing [a,a+h]

By the MVT,
$\phi(a+h)-\phi(a)=\phi^{\prime}\left(s_{0}\right) h$, for some So $\in(a, a+h)$.
(1)

$$
\Rightarrow \quad \lambda(h, k)=\begin{aligned}
& {\left[D_{1} f(s 0, b+k)\right.} \\
& \left.-D_{1} f(s 0, b)\right] \cdot h
\end{aligned}
$$

Now consider $D_{1} f\left(s_{0}, t\right)$. Since
$D_{2} D_{1} f$ exists in \bar{A}, it is differentiable for t in an open interval about $[b, b+k]$.
By applying MVT, we have:

$$
\frac{D_{1} f\left(s_{0}, b+k\right)-D_{1} f\left(s_{0}, b\right)}{=D_{2} D_{1} f\left(s_{0}, t_{0}\right) \cdot k}
$$

for some to $e(b, b+k)$, which proves our claim.

Now let $\frac{x=(a, b)}{1+E} \in A$, and for $t>0$, let

$$
Q_{t}=[a, a+t] \times[b, b+t]
$$

By our Claim, for sufficiently small t, we have $Q_{t} C A$, and so we have:

$$
\begin{aligned}
& \text { and so we have: } \\
& \frac{\lambda(t, t)=D_{2} D_{1} f\left(P_{t}\right) \cdot t^{2} \text {, for }}{\text { some } P_{t} \in Q_{t}} \text {. } \text { see that }
\end{aligned}
$$

hefting $t \rightarrow 0$, we see that

$$
P_{t} \xrightarrow{v}
$$

Since $D_{2} D_{1} f$ is continuous, we have:

$$
\begin{aligned}
& \text { rave: } \\
& \frac{\lambda(t, t)}{\underline{t^{2}}} \rightarrow \underset{\text { as } t \rightarrow 0}{D_{2} D_{1} f(x)}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\frac{\lambda(t, t)}{t^{2}} \rightarrow & D_{1} D_{2} f(x) \\
& \text { as } t \rightarrow 0
\end{aligned}
$$

Chain rule
Theorem, Let $A \subset \mathbb{R}^{m}$ and $B \subset \mathbb{R}^{n}$, and let $f: A \rightarrow \mathbb{R}^{n}$, $g: B \rightarrow \mathbb{R}^{P}$ with $f(A) \subset B$. Suppose that $f(a)=b$. If f is diff at \underline{a}, and g is diff at b, then $g \circ f$
is diff at a. Furthermore,

$$
\frac{D(g \circ f)}{(p \times m)}(a)=\underset{(p \times n) \cdot(n \times m)}{\operatorname{Dg}(b) D f(a)}
$$

Proof.
Let $\underset{x}{x} \in \mathbb{R}^{m}$ and $\tilde{y}^{\frac{q^{a r b i t r a r y}}{y} \in \mathbb{R}^{n}}$. We choose ε so that $g(y)$ is well-defined on $|y-b|<\varepsilon$, and we choose $\&$ so that $|f(x)-b|<\varepsilon$, whenever $|x-a|<\delta$ (due to the cont. of f). net

$$
\Delta(h)=f(a+h)-f(a) \text {, which }
$$

is defined for $|h|<\delta$.
Claim. $\frac{|\Delta h|}{|h|}$ is bounded for h in some deleted nbhd of 0 .

Define

$$
\begin{aligned}
& \text { efine } \\
& F(h)=\left\{\begin{array}{l}
\frac{\Delta(h)-D f(a) \cdot h}{|h|}, 0<|h|<8 \\
0, \text { otherwise. }
\end{array}\right. \text {. }
\end{aligned}
$$

Note that since f is diff. at a, we have F is cont at $0 .\left(\lim _{h \rightarrow 0} F(h)=F(0)\right)$ Furthermore,

$$
\begin{equation*}
\Delta(h)=D f(a) \cdot h+|h| F(h) \tag{*}
\end{equation*}
$$

for $0<|h|<8$ (and $h=0$).

$$
\begin{aligned}
|\Delta(h)| & =|D f(a)||h|+|h| \mid F(h)) \\
& \leqslant m|D f(a)||h|+|h||F(h)|
\end{aligned}
$$

Since $|F(h)|$ is bounded for h in a nbhd of 0 , so is

$$
\frac{|\Delta(n)|}{|n|} \leqslant m|D f(a)|+|F(n)|
$$

$\rightarrow \frac{|\Delta(n)|}{|n|}$ is bounded ($\left.\begin{array}{c}\text { Proves } \\ \text { claim }\end{array}\right)$
Now, we repeat claim for y, by defining

$$
\begin{aligned}
& \text { by defining } \\
& G(k)=\left\{\begin{array}{l}
\frac{(b+k)-g(b)-D g(b) \cdot k}{1 k)}, 0<1 k k \varepsilon \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

For $|K|<\varepsilon, G$ satisfies

$$
\begin{aligned}
& g(b+k)-g(b)=D g(b) \cdot k \\
& L|k| G(k) \\
& \longrightarrow(* *)
\end{aligned}
$$

Now let $h \in \mathbb{R}^{m}$ with $\mid \overline{\overline{1<8}}$.
Then $|\Delta(h)|<\varepsilon$, so we may substitute $\Delta(h)$ for k in ($*_{*}^{*}$),
(Note that

$$
\begin{aligned}
b+k=b+\Delta(h) & =f(a)+\Delta h \\
& =f(a+h))
\end{aligned}
$$

we have:

$$
\begin{aligned}
& g \circ f(a+h)-g \circ f(a)=D g(b) \Delta h \\
&+|\Delta(h)| G(\Delta(h)) \\
& L \rightarrow(* *)
\end{aligned}
$$

Rewriting (***) using (*)

$$
\begin{gathered}
\left.\frac{1}{|n|}[g \circ f(a+h)-g \circ f(a)-D g(b) \cdot D f(a))\right] \\
=D g(b) F(h)+\frac{1}{|n|}|\Delta(n)| G(\Delta(n)) \\
0<|n|<8 .
\end{gathered}
$$

which holds for $0<|h| \alpha \delta$.

$$
\text { Since }{ }^{\text {Which }} \mathrm{h} F(h) \rightarrow 0, \quad G(\Delta(h)) \rightarrow 0,
$$

and $\frac{|\Delta(h)|}{|h|}$ is bounded (claim) we have:

$$
\begin{aligned}
& \lim _{h \rightarrow 0}\left[g \circ f(a+h)-\frac{g \circ f(a)}{-D g(b) \cdot D f(a) h}\right] \\
&=0 \\
& \Rightarrow D(g \circ f)(a)= D_{g}(b) \cdot D f(a) \\
&(b y \\
& \text { uniguvess } \\
& \text { of }
\end{aligned}
$$

Corollary. Let A be open in \mathbb{R}^{m}, and B be open in \mathbb{R}^{n}. Let $f: A \rightarrow \mathbb{R}^{m}$ and $g: B \longrightarrow \mathbb{R}^{P}$ with $f(A) \subset B$. If f, g are of class C^{γ}, then so is got.

Proof. Case $r=1$, ie f, g are of class C^{1}.
Then $D g$ has continuous realvalued components on B. f is cont. on A $\Rightarrow D g \circ f(x)$ also has cont

Components on each $x \in A$

$$
\begin{aligned}
& (\operatorname{Dg\circ f(x)} \\
& \text { chaise } \\
& \text { rive } \\
& \operatorname{Dg}(f(x)) D f(x))
\end{aligned}
$$

\Rightarrow gof is of class C^{1} on A.

Now use induction on γ to complete the proof (Exercise)

Theorem (Mean Value Theorem). let A be open in \mathbb{R}^{m}, and let $f: A \rightarrow \mathbb{R}$ be diff on A. If A contains the line segments with end
points a and $a+h$, to some ae A $\mathcal{F}=a+t o h, 0<t_{0}<1$, such that

$$
f(a+h)-f(a)=D f(c) \cdot h
$$

Proof.
Set $\phi(t)=f(a+t h)$.
Then ϕ is defined for all + in an open interval about $[0,1]$, and is also diff. as

$$
\phi^{\prime}(t)=D f(a+t h) \cdot h
$$

By the MVT $(\operatorname{dim} 1)$, we have

$$
\phi(1)-\phi(0)=\phi^{\prime}\left(t_{0}\right) \cdot 1
$$

$$
t_{0} \in(0,1)
$$

$$
\begin{array}{r}
\Rightarrow f(a+h)-f(a)=D f(a+t o h) \\
0 h \text { a }
\end{array}
$$

Theorem. Let $A \subset \mathbb{R}^{n}$ be open. and let $f: A \rightarrow R^{n}$ with $f(a)=b$. suppose that g maps a noble of b into \mathbb{R}^{n} such that $g(b)=a$ and $(g \circ f)(x)=x \quad \forall x$ in that nbhd (of a). If f is diff at a and if g is diff at b, then

$$
D_{g}(b)=[D f(a)]^{-1}
$$

Proof. We are given that $(g \circ f)(x)=i d(x), \forall x$ in Some nbhd of a.
By Chain rule, we have

$$
\begin{aligned}
& D_{g}(b) D f(a)=I_{n} \\
\Rightarrow & D_{g}(b)=D f(a)^{-1} \quad
\end{aligned}
$$

Inverse Function Theorem
Lemma 8.1. Let A be open in \mathbb{R}^{n}, and let $f: A \longrightarrow \mathbb{R}^{n}$ be of class C^{\prime}. If $D f(x)$
is non-singular, then \exists an $\alpha, \varepsilon>0$ such that

$$
\frac{\left|f\left(x_{0}\right)-f\left(x_{1}\right)\right| \geqslant \alpha\left|x_{0}-x_{1}\right|}{\text { all } x_{0}, x_{1} \in C\left(x_{j} \varepsilon\right)}
$$

Proof.
Let $E=D f(x) \cdot B y$ assumption
E is non-singular.

$$
\begin{aligned}
\left|x_{0}-x_{1}\right| & =\left|E^{-1}\left(E \cdot x_{0}-E \cdot x_{1}\right)\right| \\
& \leq n\left|E^{-1}\right|\left|E \cdot x_{0}-E x_{1}\right|
\end{aligned}
$$

If we set $2 \alpha=\frac{1}{n\left(E^{-1}\right)^{\prime}}$,
then for all $x_{0}, x_{1} \in \mathbb{R}^{n}$

$$
\left|E_{x_{0}}-E_{x_{1}}\right| \geqslant 2 \alpha\left|x_{0}-x_{1}\right|
$$

let $H(y)=f(y)-E \cdot y$
Then $\operatorname{DH}(y)=D f(y)-E$

$$
\Rightarrow D H(x)=O\left(\underset{E}{\left(D f^{\prime}\right.}(x)-E\right)
$$

$\because H$ is C^{\prime}, we choose $\varepsilon>0$ such that

$$
\begin{aligned}
& |D H(y)|<\frac{\alpha}{n}, \text { for } \\
& y \in C=C(x ; \epsilon) \text {. }
\end{aligned}
$$

By MVT applied to the it component $\mathrm{Hi}_{i}^{\prime}($ of H), we get:

$$
\begin{array}{rl}
\left|H_{i}\left(x_{0}\right)-H_{i}\left(x_{1}\right)\right| & =\left|\frac{D H_{i}(c)}{\bar{n}}\left(x_{0}-x_{1}\right)\right| \\
& \left.\left.\leqslant n \frac{n}{n} \right\rvert\, x_{0}-x_{1}\right) \\
\forall \quad x_{0}, x_{1} \in C & L(*)
\end{array}
$$

Tin for $x_{0}, x_{1} \in C$, we have (by (*))

$$
\begin{aligned}
& \frac{\left.\alpha \mid x_{0}-x_{1}\right) \geqslant\left|H\left(x_{0}\right)-H\left(x_{1}\right)\right|}{\geqslant\left|E x_{1}-E x_{0}\right|} \\
& \left.-\mid f\left(x_{1}\right)-f\left(x_{0}\right)\right) \mid \\
& \geqslant 2 \alpha\left|x_{1}-x_{0}\right| \\
& -\left|f\left(x_{1}\right)-f\left(x_{0}\right)\right|
\end{aligned}
$$

Theorem, Ret A be open in \mathbb{R}^{n}, and $f: A \longrightarrow \mathbb{R}^{n}$ be of class C^{γ} with $B=f(A)$
If f is infective on A and if $D f(x)$ is non-singular for $x \in A$, then the set B is open in \mathbb{R}^{n} and the inverse $g: B \rightarrow A$ is of class ${ }^{r}$.
Theorem (Inverse Function The rem). let A be open in \mathbb{R}^{n}, and $f: A \longrightarrow \mathbb{R}^{n}$ be of class C^{γ}.
If $D f(x)$ is non-singular
at the point $y \in A, \exists a$ nbhd U soy such that $\left.f\right|_{U}: U \longrightarrow f(U)\left(=V \subset \mathbb{R}^{n}\right)$ is injective and the inverse g_{\downarrow} is of class C^{γ}.

$$
\left(g^{\downarrow}: f(u) \rightarrow v\right)
$$

Proof. By the Lemma, 子 a nbhd Vo of y on which f is injective.
Since $\operatorname{det}(D f(x)$) is a continuous function of x
and $\operatorname{det} D f(y) \neq 0, \exists a$ none $\underline{\underline{U_{1}}}$ by such that $\operatorname{det} D \overline{f(x)} \neq 0$ on y_{1}.
If $U=V_{0} \cap U_{1}$, then the hypothesis of the previous theorem is satisfied for $f: U \rightarrow \mathbb{R}^{n}$, and thus the IVT follows

Implicit Function
Theorem
Suppose that the equation $f(x, y)=0$ determines y as a diff. function of x (i.e $y=g(x)$ say). Then we have:

$$
\begin{gathered}
f(x, g(x))=0 \\
\frac{\partial f}{\partial x}+\left(\frac{\partial f}{\partial y}\right) g^{\prime}(x)=0 \\
\Rightarrow g^{\prime}(x)=\frac{-\partial f / \partial x}{\partial f / \partial y}
\end{gathered}
$$

provided that $\frac{\partial f}{\partial y} \neq 0$ at

$$
(x, g(x))-(*)
$$

The last condition (*) is in fact sufficient.
i.e.: If $f(x, y)$ has the property $\frac{\partial f}{\partial y} \neq 0$ at (a, b) that is also a solution to $f(x, y)=0 \quad(f(a, b)=0)$, then this equation determines y has a function of x near a.

In general, suppose that $f: \mathbb{R}^{k+n} \longrightarrow \mathbb{R}^{n}$ is of class C^{\prime} Then $f\left(x_{1}, \cdots, x_{n+n}\right)$ $=0$ is equivalent to a system of n scalars in $k+n$ unknowns.

Notation. Net $f: A\left(c \mathbb{R}^{n}\right)$ $\longrightarrow \mathbb{R}^{m}$ be diff. hat f have component functions f_{i}. for $1 \leq i \leq n$.

Then

$$
\begin{aligned}
D f & =\frac{\partial\left(f_{1}, \ldots, f_{n}\right)}{\partial\left(x_{1}, \ldots x_{m}\right)} \\
& =\frac{\partial f}{\partial x}\left(X=\left(x_{1}, \ldots x_{m}\right)\right)
\end{aligned}
$$

Theorem. Let $A \subset \mathbb{R}^{k+n}$ be open, and let $f: \overline{\bar{A}} \rightarrow \mathbb{R}^{n}$ be diff. View f as

$$
f=f(x, y), \quad x \in \mathbb{R}^{k} \text { and } y \in \mathbb{R}^{n}
$$

Then $D f$ has the form

$$
D f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]
$$

Suppose that \exists a diff. function $g: B \frac{\text { coper }}{=} \mathbb{R}^{n}$ such that $f\left(x^{k}, g^{n}(x)\right)=0$, for $x \in B$.
Then

$$
\begin{aligned}
& \operatorname{Ten} \overline{\overline{\operatorname{Lg}(x)}}=-\left[\frac{\partial f}{\partial y}(x, g(x))\right]^{-1} \\
& \cdot \frac{\partial f}{\partial x}(x, g(x))
\end{aligned}
$$

Proof. Define $h: B \rightarrow \mathbb{R}^{k+n}$

$$
h(x)=\left(\underline{\underline{k}}, g\left(\frac{n}{(x)}\right)\right.
$$

Then by our hypothesis the function.

$$
\begin{aligned}
H(x) & =f(h(x)) \\
& =f(x, g(x))
\end{aligned}
$$

is defined and equals

$$
0, \forall x \in B
$$

By chain rule, we have.

$$
\begin{aligned}
& 0=\operatorname{DH}(x)=\operatorname{Df}(h(x)) \\
& \text { - } \operatorname{Dh}(x) \\
& =\left[\frac{\partial f}{\partial x}\left(h^{\nu}(x)\right) \frac{\partial f}{\partial y}\left(h^{\approx}(x)\right)\right] \\
& \text { - }\left[\begin{array}{l}
I_{k}{ }^{\prime} \\
D g(x)^{\prime}
\end{array}\right] \\
& (\forall x \in B)
\end{aligned}
$$

$$
\begin{array}{r}
\Rightarrow 0=\left(\frac{\partial f}{\partial x}\right)(h(x))+\frac{\partial f}{\partial y}(h(x)) \\
\cdot \operatorname{Dg}(x) .
\end{array}
$$

from which our assertion follows

Note. In other words, $\overline{\frac{\partial f}{\partial y}}$ must be nonsingular to compute D_{g}.
We will now prove that it suffices to guarantee existence of g.

Theorem. (Implicit function theorem)
Let $f: S\left(c \mathbb{R}^{k+n}\right) \rightarrow \mathbb{R}^{n}$ be of class C^{r}. Write $f=f(x, y)$, for $x \in \mathbb{R}^{k}$ and $y \in \mathbb{R}^{n}$. Ret $(A, B)^{r}$ $\in S$ such that $f(A, B)=0$ and $\operatorname{det} \frac{\partial f}{\partial y}(A, B)^{\checkmark} \neq 0$
Then \exists a nbhd W of A in \mathbb{R}^{k} and a unique Continuous function $g: W \rightarrow \mathbb{R}^{n}$ such that $g(A)=B$ and $f(x, g(x))=0, \forall x \in W$.

Moreover, g is of class C^{r}.
Proof. Define.

$$
\xrightarrow[\text { Then } F: A\left(C \mathbb{R}^{k+1 n}\right) \longrightarrow \mathbb{R}^{k+n}]{F(x, y)=(x, f(x, y))^{v}}
$$ and

$$
\stackrel{\text { ind }}{D F}=\left[\begin{array}{cc}
I_{k} & 0 \\
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}
\end{array}\right]
$$

Then

$$
\frac{n}{\operatorname{det}(D F)}=\frac{\operatorname{det}\left(\frac{\partial f}{\partial y}\right)}{\left(\begin{array}{l}
\text { at }(A, B) \text { by } \\
\text { our hypothesis })
\end{array}\right.}
$$

$(\Rightarrow D F$ is non-singul ar at $(A, B))$

Applying IFT (Inverse F.T) to F, we get an open set $U \times V\left(c \mathbb{R}^{K+n}\right)$ and $U \times V \Rightarrow(A, B)$ Such that:
(a) $\left.F\right|_{U \times v} ^{: U \times v} \rightarrow F(U \times v)$ is infective, where $F(U \times V)$ $(\ni A, O)$ is open.
(b) The inverse $G: F(U \times V) \rightarrow$ $U \times V$ exists and is of class c^{r}
Since $F(x, y)=(x, f(x, y))$
we have $(x, y)=G(x, f(x, y))$
So, G preserves X (ie first k coordinates)

$$
\Rightarrow \frac{G(x, z)=(x, h(x, z))}{k}
$$

$X \in \mathbb{R}^{k}, z \in \mathbb{R}^{n}$, and h is a C^{γ}. function mapping $f(U \times V) \xrightarrow{G} \mathbb{R}^{n}$.
Now let $W \rightarrow A$ be a connected nbhd in $\mathbb{R}^{1<}$ chosen small enough
so that $W \times 0_{0}^{0^{\circ}} \subset f(U \times V)$.
If $x \in W$, then $(X, 0) \subset f(U \times v)$,
so $G(x, 0)=(x, h(x, 0))$

$$
\begin{aligned}
\Rightarrow(x, 0) & =F(x, h(x, 0)) \\
& =(x, f(x, h(x, 0))) \\
\Rightarrow 0 & =f(x, h(x, 0))(0) \\
\text { Let } g(x)= & h(x, 0), \forall x \in W
\end{aligned}
$$

Then g satisfies

$$
f(x, y(x))=0 \rightarrow \text { from }
$$

Moreover,

$$
\begin{aligned}
&(A, \underline{B})=G(A, 0) \\
&=(A, h(A, 0)) \\
& \Rightarrow B=h(A, 0)=g(A), \\
& \text { Moreover }
\end{aligned}
$$

as desired. Moreover g is of class $C^{\gamma} \cdot\binom{$ Inverse }{$F \cdot T}$

Uniqueness of g
Suppose that $g_{0}: W \rightarrow \mathbb{R}^{n}$ is another continuous function -satisfying the conclusion of the theorem.

Then

$$
g(A)=g_{0}(A)
$$

Now suppose that for some

$$
\begin{aligned}
& \text { suppose that for some } \\
& g\left(A_{0}\right)=g_{0}\left(A_{0}\right), \wedge A_{0} \in W . \\
& A_{0}
\end{aligned}
$$

Then \exists a nbhd Wo o AD such that $g_{0}\left(w_{0}\right) \subset W$
Since $f\left(x, g_{0}(x)\right)=0$, for
$X \in W_{0}$, we have:

$$
\begin{aligned}
F\left(x, g_{0}(x)\right)= & (x, 0) \text {, so } \\
\left(x, g_{0}(x)\right)= & G(x, 0) \\
= & (x, h(x, 0)) \\
& \forall x \in W_{0}
\end{aligned}
$$

$$
\Rightarrow g_{0}=g \text { on } W_{0}
$$

Finally, we consider

$$
\left\{x \in W\left|\left|g(x)-g_{0}(x)\right|=0\right\}\right.
$$

This is open (from what we $\begin{gathered}\text { just showed }\end{gathered}$ Moreover,

$$
\begin{aligned}
& \left\{x \in W\left|\left|g(x)-g_{0}(x)\right|>0\right\}\right. \\
& |1| \text { is open. } \\
& \left|g-g_{0}\right|^{-1}(0, \infty)
\end{aligned}
$$

Sine W is connected, we have

$$
\frac{\{x \in W||g(x)-g 0(x)|=0\}}{\text { is both open and closed }}
$$

and so we have

$$
\begin{gathered}
\left\{x \in W\left|\left|g(x)-g_{0}(x)\right|=0\right\}\right. \\
=W \\
\Rightarrow g=g_{0} \text { on } W
\end{gathered}
$$

Examples
(a) $f: U\left(c \mathbb{R}^{5}\right) \longrightarrow \mathbb{R}^{2}$ is of class C^{γ}
Assuming $f(x, y, z, u, v)=0$. we wish to solve y, u in terms of x, z, v.

By the Implicit Fund. The, if $A \in U$ such that $f(A)=0$ and $\operatorname{det} \frac{\partial f}{\partial(y, u)}(A) \neq 0$, then $y=\phi(x, z, v), u=\psi(x, z, v)$
Furthermore,

$$
\begin{aligned}
& \text { Furthermore, } \\
& \frac{\partial(\phi, \psi)}{\partial(x, z, v)}=-\left[\frac{\partial f}{\partial(y, u)}\right]^{-1}\left[\frac{\partial f}{\partial(x, z, v)}\right]
\end{aligned}
$$

$$
(b) f: \mathbb{R}^{2} \longrightarrow \mathbb{R}
$$

$$
f(x, y)=x^{2}+y^{2}-5
$$

Note that $f(1,2)=0$,
and $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \neq 0$ at $(1,2)$
By the $\operatorname{Im} F T$, we can solved y in terms of x
In particular

$$
\begin{aligned}
& \text { particular } \\
& \frac{y=g(x)}{\text { continuo u }}=\sqrt{5-x^{2}} \\
& \text { in a nbhd of }(1,2)
\end{aligned}
$$

What about

$$
\begin{array}{ll}
h(x)= \begin{cases}\sqrt{5-x^{2}}, & x \geqslant 1 \\
-\sqrt{5-x^{2}}, & x<1\end{cases}
\end{array}
$$

(Not continuous)
(c) Consider the same example in (b) above in the nbhd of $(\sqrt{5}, 0)$
In function theorem is not applicable.

$$
\frac{\partial f}{\partial y}(\sqrt{5}, 0)=0\binom{\operatorname{even} \text { though }}{f(\sqrt{5}, 0)=0}
$$

If turns out that it does not have an implicit solution.
(d) $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}:(x, y) r x^{2}-y^{3}$

$$
f(0,0)=0 \text { and } \frac{\partial f}{\partial y}(0,0)=0
$$

$\Rightarrow \operatorname{Im} F \cdot T$ is not applicable.
\nRightarrow No solutio n of y in terms of x

$$
\left(y=x^{2 / 3}\right)
$$

Integration
Defn . Net $Q=\left[a_{1} \times b_{1}\right] \times \cdots \times\left[a_{n} \times b_{n}\right]$

$$
=\prod_{i=1}^{n}\left[a_{i} \times b_{i}\right]
$$

be a rectangle in \mathbb{R}^{n}. Then:
(i) $\left[a_{i}, b_{i}\right]$ is called a component interval of Q.
(ii) $\max \left\{\left|b_{i}-a_{i}\right|\right\}$ is called the width of Q.

$$
\begin{aligned}
& \text { width of }\left(b_{1}-a_{n}\right) \\
& \text { (ii) } \nu(Q)=\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right) \ldots\left(b_{n}-l_{n}\right) \text { volume of } Q \text {. }
\end{aligned}
$$ is called the volume of Q.

Note. When $n=1, \nu(Q)=$ width of $Q=$ length of $[a, b]$.

Defn. Given an interval $[a, b] \subset \mathbb{R}$, a partition of $[a, b]$ is a collection $P=\{t, \ldots, t r\}$ of points in $[a, b]$ such that:

$$
a=t_{0}<t_{1}<\ldots \cdot<t_{k}=b
$$

Each of the intervals $\left[t_{i-1}, t_{i}\right]$, $1 \leqslant i \leqslant k$ is called a subinterval determined by P.
Defy. Given a rectangle $Q=\prod_{i=1}^{n}\left[a_{i}, b_{i}\right]$ in \mathbb{R}^{n}, a partition P of Q is an n-tuple $\left(P_{1}, \ldots, P_{n}\right)$ such that
P_{j} is a partition of $\left[a_{j}, b_{j}\right]$, for each j. If for each j,
I_{j} is a subinterval determined by $P_{j}\left(\right.$ of $\left.\left[a_{j}, b_{j}\right]\right)$, the

$$
R=\prod_{i=1}^{n} I_{j}\left(=I_{1} \times \ldots \times I_{n}\right)
$$

is called a subrectangle determined by P of the rectangle Q.
The max width of these subrectangles is called a mesh of P.

Deft. Let $Q \subset \mathbb{R}^{n}$ be a rectangle, and let $f: Q \rightarrow \mathbb{R}$ be a bounded function.

$$
(|f(x)| \leqslant \mu>0, \forall x \in Q)
$$

let P be a partition of Q. For each subrectangle R deleminined by P, let:

$$
\begin{aligned}
& \text { P, let: } \\
& m_{R}(f)=\{\inf f(f(x)): x \in R\} \\
& \underline{M_{R}(f)}=\{\sup (f(x)): x \in R\}
\end{aligned}
$$

We define lower sum and upper sum (resp.) of f, determined by p by

$$
\begin{aligned}
& \underline{L(f, P)}=\sum_{R} m_{R}(f) \cdot \nu(R) \\
& U(f, P)=\sum_{R} M_{R}(f) \cdot \nu(R)
\end{aligned}
$$

Defy.
Ret $P=\left(P_{1}, \ldots, P_{n}\right)$ be a partition of Q. If $P^{\prime \prime}$ is a partition of Q obtained from P by adjoining some additional points to some or all of the partitions P_{1}, \ldots, P_{n}, Then $P^{\prime \prime}$ is called a refinement of P.

Defy. Given partitions $P=\left(P_{1}, \ldots, P_{n}\right)$ and $P^{\prime}=\left(P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right)$ of Q, the partition

$$
P^{\prime \prime}=\left(P_{1} \cup P_{1}^{\prime}, \ldots, P_{n} \cup P_{n}^{\prime}\right)
$$

is called a common refinement of P and P^{\prime}.
$\left.\begin{array}{c}\text { Note: } P_{i} \text { and } P_{i}^{\prime} \text { can have } \\ \text { a nontrivial intersection }\end{array}\right)$
Lemma. net P be a partition of Q, and let $f: Q \xrightarrow{Q}$ be a bounded function. If $P^{\prime \prime}$ is a refinement of P,
then:

$$
\begin{aligned}
L(f, P) \leqslant L\left(f, P^{\prime \prime}\right) \text { and } & U\left(f, P^{\prime \prime}\right) \\
& \leqslant U(f, P) .
\end{aligned}
$$

Proof.
Net $Q=\underline{P_{1}}\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$
It suffices to prove the lemma for the case of a refinement $P^{\prime \prime}$ obtained by adjoining a single point of

$$
P=\left(P_{1}, \ldots, P_{n}\right)
$$

WLOG, we may assume $P^{\prime \prime}$ is obtained by adding q to P_{1} : $a_{1}=t_{0}<t_{1}<\cdots<t_{k}=b_{1}$ and

$$
q \in\left(t_{i-1}, t_{i}\right)
$$

Most subrectangles determined by P are also subrectangles of $P^{\prime \prime}$, except subrectangles of the form:

$$
R_{s}=\left[t_{i-1}, t_{i}\right] \times S \text {, where }
$$

S is a subrectangle of

$$
\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right]
$$

In $P^{\prime \prime}, R_{s}$ would be replaced by:

$$
\begin{aligned}
& R_{S}^{\prime}= {\left[t_{i-1}, q\right] \times S \text { and } } \\
& R_{S}^{\prime \prime}=[q, t i] \times S .
\end{aligned}
$$

Clearly,

$$
m_{R_{s}}(f) \leqslant m_{R_{s}^{\prime}}(f)\left(R_{s}^{\prime} \subset R_{s}\right)
$$

and $m_{R_{s}}(f) \leqslant m_{R_{s}}{ }^{\prime \prime}(f)\left(R_{s}{ }^{\prime \prime} c R_{s}\right)$
Since $\nu\left(R_{S}\right)=\nu\left(R_{s^{\prime}}\right)+\nu\left(R_{s^{\prime \prime}}\right)$, by direct computation, we get:

$$
\begin{align*}
m_{R_{s}}(f) \nu\left(R_{s}\right) & \leqslant m_{R_{s}^{\prime}}(f) \nu\left(R_{s}^{\prime}\right)^{\checkmark} \tag{*}\\
& +m_{R_{s}^{\prime \prime}}(f) \nu\left(R_{s}^{\prime \prime}\right)
\end{align*}
$$

$$
\nu(R)=\nu\left(R_{1}\right)+\nu\left(R_{2}\right)
$$

Since (*) holds for every R_{S}, we have:

$$
L(f, P) \leqslant L\left(f, P^{\prime \prime}\right)
$$

Similarly, $U(f, P) \geqslant U\left(f, P^{\prime \prime}\right)$

Lemma. Net Q be a rectangle, and let $f: Q \rightarrow \mathbb{R}$ be bounded. If P^{\prime} and P are any two partitions of Q, then:

$$
L(f, p) \leqslant U\left(f, p^{\prime}\right)
$$

Proof. When $P=P^{\prime}$, it is follows immediately.
Otherwise, consider the common refinement $P^{\prime \prime}=P \cup P^{\prime}$. Then. we have:

$$
\begin{aligned}
L(f, P) \leqslant L\left(f, P^{\prime \prime}\right) & \leqslant U\left(f, P^{\prime \prime}\right) \\
& \leqslant U\left(f, P^{\prime}\right)
\end{aligned}
$$

Defn. Let Q be a rectangle and let $f: Q \rightarrow \mathbb{R}$ be a bounded function. Then we define:

$$
\begin{aligned}
& \frac{\int_{Q} f}{}:=\sup _{P}\{L(f, P)\} \\
& \bar{\int}_{Q}:=\inf _{P}\{U(f, P)\}
\end{aligned}
$$

where P ranges over all partitions of Q.
SQf and $\bar{\int}_{0}$ are called the lower and upper integrals (resp.) of f over Q.

Defy. If $\int_{0} f=\overline{\int_{Q}}$, then f is said to be integrable Over Q, and the common value is called the integral of f over Q.

Example $(a) f:[a, b] \rightarrow \mathbb{R}$ be a non-negative bounded function
If P is a partition of $[a, b]$, then:
$L(f, P)=\begin{aligned} & \text { Total area of rectangles } \\ & \text { inscribed Between } f\end{aligned}$ inscribed between f and x-axis. ($\begin{gathered}\text { inner } \\ \text { area) }\end{gathered}$
$U(f, P)=$ Total area of rectangles circumscribed about the region between f and x axis.

(b) Similarly, if $Q \subset \mathbb{R}^{2}$ and $f: Q \rightarrow \mathbb{R}$ is non-negative and bounded, then:

We can visualize $L(f, P)($ resp. $U(G P))$ to be the total volume inscribed (resp. Circumscribed) in the region between the graph of f and the $x y$-plane.

Example. $I=[0,1]$, and let $f: I \rightarrow \mathbb{R}$ be defined by:

$$
f(x)= \begin{cases}0, & \text { if } x \in Q \\ 1, & \text { if } x \in \mathbb{R} \backslash Q\end{cases}
$$

(Popcorn function or Dirichlet function)
If P is a partition of I, and R is a subinterval of P, then we have:

$$
\begin{aligned}
& m_{R}(f)=0 \\
& M_{R}(f)=1
\end{aligned}
$$

(Since R contains both rational and irration numbers).
Therefore,

$$
\begin{aligned}
& L(f, P)=\sum_{R} 0 . \nu(R)=0 \\
& U(f, P)=\sum_{R} 1 . \nu(R)=1
\end{aligned}
$$

$\Rightarrow \quad \int_{R} f=0$ and $\int_{R} f=1$
$\Rightarrow f$ is not integrable.
Theorem let Q be a rectangle, and let $f: Q \rightarrow \mathbb{R}$ be a bounded function. Then:

$$
\int_{Q} f \leqslant \overline{\int_{Q} f}
$$

Moreover, $\frac{\text { equality holds }}{3}$ iff given $\varepsilon>0, \exists$ a partition P of Q such that:

$$
\begin{array}{r}
U(f, P)-L(f, P)<\varepsilon . \\
\left(\begin{array}{l}
\text { Riemann } \\
\text { Condition) }
\end{array}\right.
\end{array}
$$

Proof. Let P^{\prime} be a partition of Q.
Then $L(f, P) \leqslant U\left(f, P^{\prime}\right)$, for every partition P of Q.

$$
\Rightarrow \quad \int_{Q} f \leqslant U\left(f, p^{\prime}\right)
$$

Since P^{\prime} is arbitrary, we have

$$
\int_{Q} f \leqslant \overline{\int^{a}}
$$

This concludes the proof of the first part.

For the second part of the assertion, assume first that

$$
\underline{\int}_{\underline{Q}} f=\int_{f}^{0}(\Rightarrow)
$$

Choose P,P' such that

$$
\underline{\int}_{Q} f-L(f, P)<\frac{\varepsilon}{2}
$$

and

$$
\begin{aligned}
& \text { and } \\
& U\left(f, p^{\prime}\right)-\overline{\int_{f}^{Q}}<\frac{\varepsilon}{2} \int^{(*)}
\end{aligned}
$$

If $P^{\prime \prime}=P U P^{\prime}$ (i.e. the common refinement), then we have:

$$
\begin{aligned}
& L(f, P) \leqslant L\left(f, P^{\prime \prime}\right) \leqslant \int_{Q} f \\
& \leqslant U\left(f, p^{\prime \prime}\right) \\
& \leqslant U\left(f, p^{\prime}\right) \\
& \Rightarrow U\left(f, p^{\prime \prime}\right)-L\left(f, p^{\prime \prime}\right)<\varepsilon \\
&(\text { Check!) } \\
&(\text { from }(*)) \\
&(\Leftrightarrow \text { If } \varepsilon= \frac{\int_{Q} f-\overline{\int_{Q} f}>0}{(\text { not-inlegrable) }}
\end{aligned}
$$

For any partition P of Q, we have:

$$
L(f, P) \leqslant \int_{Q} f<\int_{Q} f \leqslant U(f, P)
$$

$$
\begin{aligned}
& \Rightarrow U(f, p)-L(f, p) \geqslant \\
& \overrightarrow{\int_{0} f}-\int_{0}^{f} \\
&=\varepsilon
\end{aligned}
$$

Theorem
Every constant function $(f(x)=c)$ is integrable. Indeed, if Q is a rectangle and if P is a partition of Q, then

$$
\int_{Q} C=C \cdot \nu(Q)=C \sum_{R} \gamma(R)
$$

where the (last) summation extends over all subrectangles determined by P.

Corollary. Let Q be a rectangle in \mathbb{R}^{n}, and let $\left\{Q_{1}, \ldots, Q_{k}\right\}$ be a finite collection of rectangles that cover Q. Then:

$$
\nu(Q) \leqslant \sum_{i=1}^{K} \nu\left(Q_{i}\right)
$$

Proof.
Choose a rectangle Q^{\prime} containing all rectangles Q_{1}, \ldots, Q_{k}
Use the end points of intervals of Q, Q_{1}, \ldots, Q_{k} to define a partition P of Q^{\prime}.

Then each of $Q, Q_{1}, \ldots, Q K$ is a union of subrectangles determined by P.
By the preceding theorem, we have:

$$
\gamma(Q)=\sum_{R \subset Q} \gamma(R)
$$

A_{s} each subrectangle $R^{(0 f Q)}$ is contained in at least one of Q_{1}, \ldots, Q_{k} we have:

$$
\begin{aligned}
\sum_{R \subset Q} \nu(R) & \leqslant \sum_{i=1}^{K}\left(\sum_{R \subset Q} \nu(R)\right) \\
& =\sum_{i=1}^{K} \nu\left(Q_{i}\right)
\end{aligned}
$$

Existence of the integral
Defn. A subset $A \subset \mathbb{R}^{n}$ is said to be of measure zero in \mathbb{R}^{n} if for every $\varepsilon>0, J$ a covering Q_{1}, Q_{2}, \ldots of A By countably many rectangles such that:

$$
\sum_{i=1}^{\infty} \nu\left(Q_{i}\right)<\varepsilon .
$$

The rem.
(a) If $B C A$ and A is of measure zero in \mathbb{R}^{n}, then so does B.
(b) Ret $A=\bigcup_{j=1}^{\infty} A_{j}$, where each A_{j} has measure zero.
Then A has measure zero.
(C) A set $A \subset \mathbb{R}^{n}$ has measure zero iff for every $\varepsilon>0, \exists$ a countable covering of A by open rectangles $Q_{1}^{D}, Q_{2}^{0} \ldots$ such that \longrightarrow interiors of rectangles

$$
\sum_{i=1}^{\infty} \lambda\left(Q_{i}\right)<\varepsilon .
$$

(d) If Q is a rectangle in \mathbb{R}^{n}, then ∂Q has measure 0 in \mathbb{R}^{n}, but Q does not.

Proof
(a) Exercise (obvious).
(b) Given $\varepsilon>0$, let $A_{j}=\bigcup_{i=1}^{\infty} Q_{i j}$ such that $\sum_{i=1}^{\infty} \gamma\left(Q_{i j}\right)<\frac{\varepsilon}{2^{j}}$
Then $\left\{Q_{i j}\right\}$ is countable and

$$
\bigcup_{i, j} Q_{i j}=A \quad\left(A=\bigcup_{j=1}^{\infty} A_{i j}\right)
$$

Moreover,

$$
\begin{aligned}
& \text { Moreover, } \\
& \nu(A) \leqslant \sum_{i, j} \gamma\left(Q_{i j}\right)<\sum_{j=1}^{\infty} \frac{\varepsilon}{2^{j}}=\varepsilon \text { (Previous) }
\end{aligned}
$$

(Previous $\left.\begin{array}{c}\text { The }\end{array}\right)$
$(C)^{(\stackrel{1}{\rightleftarrows}}\left\{Q_{j}^{0}\right\}^{\circ}$ coven rectangles A, then clearly so does $\left\{Q_{j}\right\}$, and so the assertion follows. \Longrightarrow Suppose that A is of measure zero.
Let $A=\bigcup_{j=1}^{\infty} Q_{j}{ }^{\prime}$ such that

$$
\sum_{j=1}^{\infty} \gamma\left(Q_{j}^{\prime}\right)<\frac{\varepsilon}{2}
$$

For each i, choose Q_{i} Such that $Q_{i}{ }^{\prime} \subset Q i^{0}$ and $\nu\left(Q_{i}\right) \leqslant 2 \nu\left(Q_{i}^{\prime}\right)$.
$(\because \gamma$ is continuous function at the end points of the component intervals ?

Think about this?
Then $A=\bigcup_{j=1}^{\infty} Q_{j}{ }^{\circ}$ and

$$
\sum_{j} \nu\left(Q_{j}\right)<\varepsilon E_{c}
$$

(d) Let $Q=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ let an $i^{\text {th }}$ face of Q be:

$$
F_{i}=\left\{x \in Q \mid x_{i}=a_{i}\left(\text { or } b_{i}\right)\right\}
$$

Note that an $i^{\text {th }}$ face has measure zero.
This is because, if $x i=a i$, then

$$
\begin{aligned}
& n \\
& {\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{i}, a_{i}+\delta\right] \times \cdots \times\left[a_{n}, b_{n}\right]} \\
& \text { as small as }
\end{aligned}
$$

has volume as small as possible (By an appropriate choice

Then
$\gamma Q=$ Union of faces in Q, has measure zero.
(\because no.. of faces is finite)
Suppose Q has measure Zero. Net $\varepsilon=\nu(Q)$. Cover Q be open rectangles:

$$
Q=\bigcup_{j=1}^{\infty} Q_{j}^{0} \text { with } \underline{\sum_{j=1}^{\infty} r\left(Q_{i}\right)}\langle\varepsilon .
$$

Since Q is compact, $\overline{\text { cover }}{ }^{(}$($)$ Q by open sets $Q_{1}^{0}, \ldots Q_{k}^{0}$ (every open cover has a finite (every open subcover)
But $\sum_{i=1}^{K} \nu\left(Q_{i}\right)<\varepsilon=\gamma(Q)$

Theorem, Let $Q_{C} \mathbb{R}^{m}$, and let $f: Q \rightarrow \mathbb{R}$ be bounded.
let $D=\{x \in Q: f$ is not cont. at $x\}$
Then $\int_{Q} f$ exists iff D has measure 0 in \mathbb{R}^{m}.

Example
(a) $f(x)= \begin{cases}1 / x, & x \neq 0 \\ 0, & \text { if } x=0\end{cases}$

Is f integrable in $[-2,2)$.
Not conclusive as the
hypothesis of theorem is not satisfied (f is unbounded)
(b) $f(x)=\frac{1}{x^{2}}, 2 \leqslant x<4$

This is integrable from The theorem as is f in continuous in $[2,4)$.
(c) $f(x)= \begin{cases}x^{2}, & x \in[-2,0) \cup(0,2] \\ 1, & x=0\end{cases}$

By theorem, a $\{x: f$ is n not cont. $\}$ $=\{0\}$,
we have that f is integrable.
Theorem, Ret Q be a rectangle in \mathbb{R}^{n}, and let $f: Q \rightarrow \mathbb{R}$ be integrable.
(a) If f vanishes except on a set of measure Zero, then $\int_{Q} f=0$
(b) If f is non-negative $S_{Q} f=0$, then f vanishes
(onQ)exept on a set of measure zero.

Proof
(a) Suppose that f Vanishes except on a set $E C Q$ of measure zero.
Let P be a partition of Q.

If R is a subrectangle of P, then

$$
R \not \subset E \quad(\nu(R)>0)
$$

$\Rightarrow f$ vanishes in some point of R.

Then

$$
\begin{aligned}
& m_{R}(f) \leqslant 0 \\
& \text { and } \\
& M_{R}(f) \geqslant 0 \\
& \Rightarrow L(f, P) \leqslant 0 \text { and } \\
& \quad U(f, P) \geqslant 0 \\
& \Rightarrow \int_{Q} f \leqslant 0 \text { and } \int_{Q} f \geqslant 0 \\
& \Rightarrow \int_{Q} f=0 \text { (as integrable) }
\end{aligned}
$$

(b) Suppose that $f(x) \geqslant 0$ all $x \in Q$, and $\int_{Q} f=0$.
Claim". If f is continuous at a, then $f(a)=0$
(Then by previous theorem, f must vanish except at a set of noncontinuous points of measure zero).
net f be cont at a, and let $f(a)>0$. with $\varepsilon=f(a)$.
Then by cont. $\exists 8>0$
such that $f(x)>\frac{\varepsilon}{2}$ for $|x-a|<\varepsilon \quad(x \in a)$
Choose a partition P of Q of mesh $<\delta$, and let R_{0} be a subrectangle $\Rightarrow a$.
Then $m_{R_{0}}(f) \geqslant \frac{\varepsilon}{2}$
Moreover, $m_{R}(f) \geqslant 0$, for all R.
Therefore, it follows that

$$
\begin{aligned}
& \text { Therefore, } \begin{aligned}
L(f, P) & \sum_{R} m_{R}(f) \nu(R) \\
& \geqslant \frac{\varepsilon}{2} \nu\left(R_{0}\right)>0
\end{aligned}
\end{aligned}
$$

But

$$
L(f, p) \leqslant \int_{Q} f=0
$$

Evalution of the integral
Theorem (Fundamental Theorem of Calculus).
(a) If f is continuous on $[a, b]$, and if

$$
\begin{aligned}
& \text { and it } x \text {, for } \\
& F(x)=\int_{a}^{x} f,(x)
\end{aligned}
$$

$x \in[a, b]$, then $F^{\prime}(x)$ exists and $F^{\prime}(x)=f(x)$.
(b) If f is continuous on $[a, b]$, and if g is a function such that $g^{\prime}(x)=f(x)$
for $x \in[a, b]$, then

$$
\int_{a}^{b} f=g(b)-g(a)
$$

Theorem (Fubinis Theorem). Let $Q=A \times B$, where A is a rectangle in \mathbb{R}^{12} and B is a rectangle in \mathbb{R}^{n}. Net $f: Q \rightarrow \mathbb{R}$ be a bounded function written in the form $f(x, y)$ for $x \in A$ and $y \in B$. For each $x \in A$ consider the integrals

$$
\begin{aligned}
& \text { ider the integrals } \\
& \int_{y \in B} f(x, y) \text { and } \int_{x \in B} f(x, y) \text {. }
\end{aligned}
$$

If f is integrable over Q, then these two functions. $\left(x \mapsto \int_{y \in B} f(x, y)\right.$ and $x \mapsto \int_{y \in B}^{\bar{f}} f(x, y)$) of X are integrable over A, and

$$
\int_{Q} f=\int_{x \in A} \int_{y \in B} f(x, y)=\int_{x \in A} \int_{y \in B} f(x, y)
$$

Corollary. Let $Q=A \times B$, where A is a rectangle in \mathbb{R}^{k} and B is a rectangle in \mathbb{R}^{n}. Net $f: Q \rightarrow \mathbb{R}$ be a Bounded
function. If $\int f$ exists, and if $\int_{\nu \in B} f\left(x, x^{Q}\right)$ exists for each $\frac{y \in B}{x \in A}$, then

$$
\int_{Q} f=\int_{x \in A} \int_{y \in B} f(x, y)
$$

Corollary. Let $Q=I_{1} \times \cdots \times I_{n}$, where I_{j} is a closed interval in \mathbb{R} for each j. If $f: Q \rightarrow \mathbb{R}$ is continuous, then

$$
\int_{q}^{f} f=\int_{x_{1} \in I_{1}} \cdots \int_{x_{n \in}} f\left(x_{n}, \ldots x_{n}\right)
$$

Partitions of Unity
Defn. Let $A \subset \mathbb{R}^{n}$, and let O be a collection of open sets that cover A. (i.e. $A C \bigcup_{V \in O} V$). Consider a collection Φ of c^{∞} functions defined on an open set $W \supset A\left(\begin{array}{c}\varphi \in \Phi \\ \varphi: \omega \rightarrow \mathbb{R})\end{array}\right.$ such that:
(a) For each $x \in A$, and each $\varphi \in \Phi$, we have $0 \leq \varphi(x) \leq 1$.
(b) For each $x \in A, \exists$ an open set $V \neq x$ such that all but finitely many $\varphi \in \Phi$ are 0 on V.
(C) For each $x \in A$, we have $\sum_{\varphi \in \Phi} \varphi(x)=1$.
(d) For each $\varphi \in \Phi, \exists$ an open set $U \in O$ such that $\varphi=0$ outside some closed set contained in U.
Then:
(i) A collection Φ satisfying (a)-(c) is called a c^{∞}
partition of unity for A.
(ii) If in addition, Φ also satisfies (d), it is said to be subordinate to the cover O.

Theorem . Let $A \subset \mathbb{R}^{n}$, and let O be a collection of open sets that cover A.
Then there exists a c^{∞} partition of unity Φ for A that is subordinate to the cover O.

Proof.
Case 1. A is compact.
Then J finitely many $\left\{v_{i}\right\}_{i=1}^{n}, v_{i} \in O$ that cover A.

Claim. We can find compact sets $D_{i} \subset V_{i}$ such that $A=\bigcup_{i=1}^{n} D_{i}$
Proof (of claim). The sets Di can be inductively constructed as follows:

Suppose that D_{1}, \ldots, D_{k} have been chosen so that

$$
\left(\bigcup_{i=1}^{k} D_{i}^{0}\right) \cup\left(\bigcup_{i=k+1}^{n} U_{i}\right)
$$

covers A.
let

$$
C_{k+1}=A-\left(\left(\bigcup_{i=1}^{k} D_{i}^{i}\right) \cup\left(\bigcup_{i=k+1}^{n} U_{i}\right)\right)
$$

Then $C_{k+1} \subset U_{k+1}$ is compact.
$\Rightarrow \exists$ a compact set D_{K+1} such that:
$C_{k+1} \subset D_{k+1}^{0}$ and
$D_{k+1} \subset \cup_{k+1}(w h y ?)$
claim

Let ψ_{i} be a nonnegative C^{∞} - function which is positive on D_{i} and O outside of some closed set containing $U_{i} \cdot($ Why?)
Since $\left\{D_{1}, . ., D_{n}\right\}$ covers A, we have:

$$
\sum_{i=1}^{n} \psi_{i}(x)>0, \quad \forall x
$$

in some open set $U \supset A$. On U, we define:

$$
\varphi_{i}(x)=\frac{\psi_{i}(x)}{\sum_{i=1}^{n} \psi_{i}(x)}
$$

If f is a C^{∞}-function which is 1 on A and o outside some closed set in U, then:
$\Phi=\left\{f_{0} \varphi_{1}, \ldots, f_{0} \varphi_{n}\right\}$ is the desired partition of unity
Case 2. Let $A=A_{1} \cup A_{2} \cup \cdots$ where each A_{i} is compact and $A_{i} \subset A_{i+1}^{0}$.

For each i, let:

$$
\underline{\underline{O_{i}}}=\left\{\frac{U \cap\left(A_{i+1}-A_{i-2}\right)}{: U \in O\}}\right.
$$

Then $\{0 i\}$ covers $A_{i}-A_{i-1}^{0}$

There exists a partion of unity Φ_{i} for B_{i}, subordinate to O_{i}. (by part (a))
For each $x \in A$, the sum

$$
\sigma(x)=\sum_{\varphi \in \Phi i, \forall i} \varphi(x)^{\checkmark}
$$

is well-defined as its finite in some open set $\Rightarrow x$.
$\left(\because x \in A_{i} \Rightarrow \varphi(x)=0\right.$, for alt $\varphi \in \Phi j$, for $j \geqslant i+2$)
Then

$$
\left\{\varphi^{\prime}(x)=\frac{\varphi(x)}{\sigma(x)}: \varphi \in \frac{\Phi}{\forall i}\right.
$$

is the desired partition of unity.
Case 3. A is open.
let

$$
\begin{aligned}
& \text { ret } \\
& A_{i}=\{x \in A:|x| \leq i \text { and } \\
& \left.\qquad \operatorname{dist}(x, \partial A) \geqslant \frac{1}{i}\right\}
\end{aligned}
$$

Then $A=\bigcup_{i=1}^{\infty} A_{i}(i \in \mathbb{N})$

and $A_{i} \subset A_{i+1}$.
Since the A_{i} are compact.
It follows now from Case (2).
Case 4. A is arbitrary Let $B=\bigcup_{V \in O} V$. Then B open set.

Then by Case (3), J a POU for B, and hence for A.

Remark
Let CCA be compact. For each $x \in C, \exists$ an open set $V_{x} \neq x$ such that only finitely many $\varphi \in \Phi$ are nonzero on V_{x}. (from condition (b) of pow).

Since C is compact, finitely many such V_{x} cover C.

Defn. Net 0 be a (proper) open cover of $A \subset \mathbb{R}^{n}$ let Φ be 1 subordinate to O. Let $f: A \longrightarrow \mathbb{R}$ be bounded in some open set around each point of A and $\{x \in A \mid f$ dis has measure O.

Then we say f is integrable on A if:
$\sum_{\varphi \in \Phi} \int_{A} \underline{=}{ }^{\varphi \cdot|f|}$ converges.
By construction
f et function
$4 \in$ $\varphi \in \Phi$
Note: This convergence
$\Rightarrow \sum_{\varphi \in \Phi}\left|\int_{A} \varphi \cdot f\right|$ converges

$$
\binom{\varphi \cdot|f|=|\varphi \cdot f|}{\left|\int g\right| \leqslant \int|g|}
$$

$\Rightarrow \sum_{\varphi \in \Phi^{A}} \int \varphi \cdot f$ converges

Defy So, we define

$$
\sum_{\varphi \in \Phi} \int_{A}^{\varphi} \cdot f:=\int_{A} f
$$

Theorem (a) If Ψ is $(*)$ another partition of unity subordinate to a (proper) cover O^{\prime} ' of A, then $\sum_{\psi \in \Psi} \psi \cdot \mid f$) also converges, and

$$
\sum_{\varphi \in \Phi} \int_{A} \varphi \cdot f=\sum_{\psi \in \Psi} \int_{A} \psi_{0} \psi_{0} f
$$

(b) If A and f are bounded, then f is integrable on A.
(c) If A is bounded and ∂A has measure 0 (Jordan-measurable), then f is integrable on A.
Proof
(a) Note that $\varphi \cdot f=0$ except on a compact $C(C A)$, and there exists
only finitely many $\psi \in \Psi$ that are nonzero on C.
Therefore, we can write:

$$
\begin{array}{r}
\sum_{\varphi \in \Phi} \int_{A}^{1 /} \varphi \cdot f=\sum_{\varphi \in \Phi} \int_{A} \sum_{\psi \in \Phi} \psi \cdot \varphi \cdot f \\
\int_{A}^{\|} f=\sum_{\varphi \in \Phi} \sum_{\psi \in \Phi} \int_{(* *)}(\psi \cdot \varphi \cdot f)
\end{array}
$$

Apply (**) to $|f|$. Then we have;
$\sum_{\varphi \in \Phi} \sum_{\psi \in \Phi_{A}} \int_{A}^{\psi} \varphi \cdot \varphi \cdot(f)$ converges

$$
\begin{aligned}
\varphi \in \Phi & \psi \in \Phi A \quad \mid \psi \cdot \varphi \cdot f)\left.^{\checkmark}\right|_{\varphi \in \Phi} \\
\Rightarrow & \sum_{\varphi \in \Phi} \sum_{\psi \in \Phi}\left|\int_{A} \psi \cdot \varphi \cdot f\right|_{(* * *)}
\end{aligned}
$$

Converges

$$
\begin{aligned}
& \text { converges } \\
& \left(\left|\int f\right| \leqslant \int|f|\right) \\
& \text { obtained from }(* *)
\end{aligned}
$$

obtained from (**)
Since (***) absolutely. conver ges \Rightarrow Summations can be interchanged. Upon interchanging the summation in (**).
we obtain:
$\sum_{\psi \in \Phi} \int_{A} \psi \cdot f$ converges.
Applying this to $|f|$. we get.
$\sum_{\psi \in \Psi} \int_{A} \psi \cdot|f|$ converges
(b) If A is bounded, then A is contained in a closed rectangles B and ${ }^{f} \wedge$ is $|f(x)| \leqslant M$, for $x \in A$.

Suppose that $F \subset \underline{\Phi}$ is finite. Then

$$
\begin{aligned}
\sum_{\varphi \in F} \int_{A} \varphi \cdot|f| \leqslant & \sum_{\varphi \in F} M \int_{A} \varphi \\
= & M \int_{A} \sum_{\varphi \in F} \varphi \\
& \leqslant M \nu(B) \\
& \left(\sum_{\varphi \in F} \varphi \leqslant 1\right)
\end{aligned}
$$

(C) If A is Jordan-meas urable and f is bounded, then f is integrable on A.

For $\varepsilon>0$, J compact $C C A$ such that

$$
\int_{1}^{L A} 1<\varepsilon \text { (why? Exercise) }
$$

ATC
Moreover, J only finitely many $\varphi \in \Phi$ nonzero on C.
If $F C \Phi$ is any collection that includes these finitely may φ_{s}.

$$
\begin{aligned}
& \left|\int_{A} f-\sum_{\varphi \in F} \int_{A} \varphi \cdot f\right| \\
& \leqslant \int_{A}\left|f-\sum_{\varphi \in F} \varphi \cdot f\right| \\
& S M \int_{A}\left(1-\sum_{\substack{\varphi \in F \\
(f \text { is bounde }}} \varphi\right)^{2} \\
& \text { (} f \text { is bounded } \\
& M \int_{A} \sum_{\varphi \in \Phi \backslash F} \varphi \text { by } M \text {) } \\
& \leqslant M \int_{A \backslash C} 1 \\
& \leqslant M E \quad E
\end{aligned}
$$

Change of variables
If $g:[a, b] \rightarrow \mathbb{R}$ is continuously diff. and $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous, then

$$
\int_{g(a)}^{g(b)} f=\int_{a}^{b}(f \circ g) g^{\prime}
$$

Moreove, when g is $1-1$

$$
\int_{g((a, b))}^{f}=\int_{(a, b)}(f \circ g)\left|g^{\prime}\right|
$$

Theorem. Let $A \subset \mathbb{R}^{n}$ be an open set, and $g: A \rightarrow \mathbb{R}^{n}$ a 1^{-1} continuously differentiable function such that $\operatorname{det}\left(D_{g}(x)\right) \neq 0$, for all $x \in A$. If $f: g(A) \longrightarrow \mathbb{R}$ is integrable, then:

$$
\int_{g(A)} f=\int_{A}(f \circ g)|\operatorname{det}(D g)|
$$

Proof.
Claim 1. Suppose that there exists a proper cover O for A such that for each $U \in O$ and any integrable $f(o n A)$, we have:

$$
\int_{g(u)} f=\int_{U}(f \circ g)\left|\operatorname{det} g^{\prime}\right|
$$

Then the Theorem holds for all A.

Proof (of Claim 1).
Note that $\{g(u): v \in 0\}$ is an open cover of $g(A)$.
let I be a DoU sub. ordinate to this cover.
For $\varphi \in \Phi$, if $\varphi=0$ outside $g(U)$, then $(\varphi \cdot f) \circ g=0$ outside U. (g is $1-1$)

Therefore, this expression

$$
\left.\int_{g(U)} \varphi \cdot f=\int_{U}[(\varphi \cdot f) \circ g] \mid \operatorname{detg}^{\prime}\right)
$$

can be written as (i.e. is equivalent to)

$$
\int_{g(A)} \varphi \cdot f=\int_{A}[(\varphi \cdot f) \cdot g]\left|\operatorname{det} g^{\prime}\right|
$$

Hence,

$$
\begin{aligned}
& \text { Hence, } \\
& \int_{g(A)} f=\sum_{\varphi \in \Phi} \int_{g(A)} \varphi \cdot f
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\sum_{\varphi \in \Phi} \int_{A}[(\varphi \cdot f) \circ g] \mid \operatorname{det} g^{\prime}\right) \\
& =\sum_{\varphi \in \Phi}\left[(\varphi \cdot g) \cdot(f \circ g)\left|\operatorname{det} g^{\prime}\right|\right. \\
& =\int_{A}(f \circ g)\left|\operatorname{det} g^{\prime}\right|
\end{aligned}
$$

Claim 2. It suffices to prove the Theorem for

$$
f=1 \quad \text { of }(\operatorname{loim} 2)
$$

Proof.' If the Theorem holds true for $f=1$, then it holds true for all
constant functions.
Net V be a rectangle in $g(A)$ and P a partition of V.
For each subrectangle S of P, let

$$
\begin{aligned}
s \text { of } & =m_{s}(f)\binom{\text { inf of }}{f \text { overs }} \\
f_{s} & =\sum_{s} m_{s}(f) r(s) \\
& =\sum_{s} \int_{S^{0}} f_{s} \\
& \left.=\sum_{s} \int_{g^{-1}\left(s^{\circ}\right)}(f, p) g\right)\left|\operatorname{det}^{\prime}\right|
\end{aligned}
$$

(Theorem holds for constr fr n f)

$$
\begin{aligned}
& \leqslant \sum_{s} \int_{g^{-1}\left(s^{0}\right)}(f \circ g)\left|\operatorname{det} g^{\prime}\right| \\
& \leqslant \int_{g^{-1}(v)}(f \circ g)\left|\operatorname{det} g^{\prime}\right|
\end{aligned}
$$

By def. $\int f$ is the $L \cup B$ for all ${ }^{V}(f, p)$. So we have

$$
\int_{V} f \leqslant \int_{g^{-1}(v)}(f \circ g)\left|\operatorname{det} g^{\prime}\right|
$$

In a similar manner, we can take $f_{s}=M_{s}(f)$ and repating the arguments above,
to obtain:

$$
\int_{v} f \geqslant \int_{g^{-1}(v)}(f \circ g)\left|\operatorname{det} g^{\prime}\right|
$$

\Rightarrow From (1) \& (2), we have:

$$
\int_{V} f=\int_{g^{-1}(v)}(f \circ g)\left|\operatorname{det} g^{\prime}\right|
$$

for V in some proper cover of $g(A)$.
The result now follows from Claim 1

Claim 3. If the theorem holds for $g: A \rightarrow \mathbb{R}^{n}$ and $h: B \rightarrow \mathbb{R}^{n}$, where $g(A) C B$, then it holds for hog: $A \longrightarrow \mathbb{R}^{n}$
Proof(Claim 3). Exercise
Claim 4. The theorem holds when g is a linear transformation. Proof (Clai my). From Claims 1 and 2, it suffices to show for any open rectangle U that

$$
\int_{g(u)} 1=\int_{U}\left|\operatorname{det} g^{\prime}\right|
$$

(Exercise) claim 4
Proof (contd.) We prove the main Theorem by induction on n.
The theorem clearly holds for $n=1$. (due to Claim $1, \forall 2$ and the 1-dim case).
Assume that the theorem holds for $(n-1)$.

We show that it holds for n. For each $a \in A$, we need to find an open set $U \neq a$ (UCA) for which the theorem holds.
Moreover, we may assume FLOG $g^{\prime}(a)=I$. (?)
Define $n: A \rightarrow \mathbb{R}^{n}$ by

$$
x=\left(x_{1}, \ldots x_{n}\right) \stackrel{h}{\longmapsto}\left(g_{1}(x), \ldots, g_{n-1}(x), x_{n}\right)
$$

Then $h^{\prime}(a)=I$

Hence, in some nbhd $a \in U^{\prime} \subset A \quad h$ is $1-1$ and $\operatorname{det}\left(h^{\prime}(x)\right) \neq 0$.

Define

$$
\begin{aligned}
& k: h\left(u^{\prime}\right) \longrightarrow \mathbb{R}^{n} \\
& \text { By } \\
& K(x)=\left(x_{1}, \ldots, x_{n-1}, g_{n}\left(h^{-1}(x)\right)\right.
\end{aligned}
$$

Then $g=k 0 h$.
Since

$$
\begin{aligned}
& \left(g_{n o h}\right)^{-1}(h(a)) \\
& =\left(g_{n}\right)^{\prime}(a)\left(h^{\prime}(a)\right)^{-1}
\end{aligned}
$$

$$
=\left(g_{n}\right)^{\prime}(a) \quad\left[h^{\prime}(a)=I\right]
$$

Thus, in some nbhd $h(a) \in V \subset h\left(u^{\prime}\right)_{K_{n}^{\prime}(x)}^{K}$ is $1-1$ and $\operatorname{det}\left(\operatorname{Dk}_{k}^{\prime}(x)\right) \neq 0$.

Putting $U=K^{-1}(V)$, we have $g=$ on, where $h: U \longrightarrow \mathbb{R}^{n}$ and $k: V \rightarrow \mathbb{R}^{n}$ with $h(u) \subset V$.
We establish the assertion for h (as the proof for k is similar)

Let WCU be a rectangle of the form $D \times\left[a_{n}, b_{n}\right]$, where
$D \subset \mathbb{R}^{n-1}$

$$
\int_{h(w)} 1=\int_{\left[a_{n}, b_{n}\right]}\left(\int_{h\left(D \times\left\{x_{n}\right\}\right)} 1 d x_{1} \cdots d x_{n-1}\right)
$$

Ret

$$
h_{x_{n}}: D\left(C \mathbb{R}^{n-1}\right) \rightarrow \mathbb{R}^{n-1} \text { be }
$$

defined by

$$
\begin{aligned}
& h_{x_{n},}\left(x_{1}, \ldots, x_{n-1}\right) \\
& \quad=\left(g_{1}\left(x_{1}, \ldots x_{n}\right), \ldots, g_{n-1}\left(x_{1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

Then each $h_{x_{n}}$ is $1-1$

$$
\Rightarrow \operatorname{det}\left(D h_{x_{n}}\right)\left(x_{1}, \ldots, x_{n-1}\right)
$$

$$
\begin{gathered}
=\operatorname{det}\left(\operatorname{Dh}\left(x_{1}, \ldots, x_{n}\right)\right) \neq 0 \\
\left(g=k_{0} h\right)
\end{gathered}
$$

Hence,

$$
\int_{h\left(D \times\left\{x_{n} \xi\right)\right.} \frac{1}{h_{x^{n}(D)}} 1
$$

Applying the theorem in the $(n-1)$-case

$$
\begin{aligned}
\int_{h(W)} 1 & =\int_{\left[a_{n}, b_{n}\right]}\left(\int_{h_{x^{n}(D)}} 1 d x_{1} \ldots d x_{n-1}\right) d x_{n} \\
& =\int_{\left[a_{n}, b_{n}\right]}\left(\int_{D}\left|\operatorname{det} D h_{x^{n}}\left(x_{1}, \ldots x_{n-1}\right)\right|\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\left[a_{n}, b_{n}\right]}\left(\int_{D}\left|\operatorname{det} D h\left(x_{1}, \ldots, x_{n}\right)\right|\right. \\
& =\int_{W}|\operatorname{det} \operatorname{Dh}(x)|
\end{aligned}
$$

Theorem (Sards Theorem). Let $g: A \longrightarrow \mathbb{R}^{m}$ be continuously differentiable, where $A \subset \mathbb{R}^{n}$ is open, and let

$$
B=\{x \in A: \operatorname{det}(D g(x))=0\} \text {. }
$$

Then $g(B)$ has measure zero.

Integration on chains
Multilinear algebra
Defy. Net V be a vector Space over \mathbb{R}, and let $V^{k}=V \times \ldots \times V$ be the k-fold product. A function $T: V \xrightarrow{\kappa} \mathbb{R}$ is said to be multilinear if for each i with $1 \leq i \leqslant k$, we have:

$$
\begin{aligned}
& \text { (a) } \begin{aligned}
& \left(v_{1}, \ldots, v_{i}+v_{i}, \ldots, v_{k}\right) \\
= & T\left(v_{1}, \ldots v_{i}, \cdots v_{k}\right) \\
& +T\left(v_{1}, \cdots v_{i}, \ldots v_{k}\right)
\end{aligned}
\end{aligned}
$$

(b) $T\left(v_{1}, \ldots, a v_{i}, \ldots v_{k}\right)$

$$
=a T\left(v_{1}, \ldots v_{i}, \ldots v_{k}\right)
$$

Defn. A multilinear function $T: V^{k} \longrightarrow \mathbb{R}$ is called a k.tensor on V.
Remark. The set of all k-tensors $J^{k}(V)$ on V is a Vector space over H
Defoe. For $S \in J^{K}(V)$ and $T \in J^{l}(V)$, we define the tensor product $S \otimes T \in \sigma^{k+l}(v)$
by:

$$
\begin{aligned}
& S \otimes T\left(v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{e}\right) \\
& \quad=S\left(v_{1}, \ldots, v_{k}\right) \cdot T\left(v_{k+1}, \ldots, v_{l}\right)
\end{aligned}
$$

Remark. Note that

$$
\overline{S \otimes T} \neq T \otimes S
$$

Lemma. Tensor product \otimes satisfies the following properties.

$$
(a)\left(S_{1}+S_{2}\right) \otimes T=S_{1} \otimes T+S_{2} \otimes T
$$

(b) $S \otimes\left(T_{1}+T_{2}\right)=S \otimes T_{1}+S \otimes T_{2}$
(c) $(a S) \otimes T=S \otimes a T=a(S \otimes T)$
(d) $(S \otimes T) \otimes U=(S \otimes T) \otimes U$

Remark
(i) The tensor products in
(d) are usually denoted by S®T®U ; higher products
$T_{1} \otimes \ldots \otimes$ Tr are defined similarly.
(ii) $J^{\prime}(V)=V^{*}$ (dual space)

Theorem. Net v_{1}, \ldots, v_{n} be a basis for V, and let $\varphi_{1}, \ldots, \varphi_{n}$ Be basis for V^{*} so that $\varphi_{i}\left(V_{j}\right)=\delta_{i j}$. Then the set of all k-fold tensor products

$$
\begin{aligned}
& \text {-fold ensor } \\
& \varphi_{i_{1} \otimes} \otimes \varphi_{i k} 1 \leqslant i_{1}, \ldots, i_{k} \leqslant n \\
& c^{k}(v) .
\end{aligned}
$$

is a basis for $J^{k}(v)$.

Consequently, $\operatorname{dim}\left(J^{k}(v)\right)=n^{k}$.
Proof
Observe that
$\left(\varphi_{i, \otimes}, \ldots \otimes \varphi_{i k}\right)\left(v_{j}, \ldots, v_{j_{k}}\right)$
$=\delta_{i, j,} \ldots \delta_{i k, j k}$
$= \begin{cases}1, & \text { if } j r=i, \text { for } 1 \leq r \leq k \\ 0, & \text { otherwise. }\end{cases}$
If $\omega_{1}, \ldots, \omega_{k}$ are k vectors with $w_{i}=\sum_{j=1}^{n} a_{i j} v_{j}$ and $T \in J^{k}(v)$, then:

$$
T\left(w_{1}, \ldots, w_{k}\right)=\sum_{j_{1}, \ldots j_{k}=1}^{n} a_{1, j 1} \ldots\left(a_{k}, \ldots v_{j k}\right)
$$

$$
\begin{aligned}
& =\sum_{i_{1}, \ldots i_{k}=1}^{n} T\left(v_{\left.i_{1}, \ldots v_{i_{k}}\right) \cdot\left(\varphi_{i_{1} \otimes \ldots \otimes}\left(\varphi_{i_{k}}\right)\right.}^{\left(w_{1}, \ldots, w_{k}\right)}\right. \\
& \Rightarrow T=\sum_{i_{1}, \ldots i_{k}=1}^{n} T\left(v_{i_{1}}, \ldots v_{i_{k}}\right) \cdot\left(\varphi_{\left.i_{1} \otimes \ldots \otimes \varphi_{i_{k}}\right)}\right. \\
& \Rightarrow \varphi_{i_{1} \otimes} \ldots \otimes \varphi_{i_{k}} \operatorname{span} J^{k}(v) .
\end{aligned}
$$

Now suppose that

$$
\sum_{i_{1}, \ldots i_{k}=1}^{n} a_{i}, \ldots, i_{k} \cdot \varphi_{i, \otimes} \otimes \otimes \varphi_{i_{k}}=0
$$

Apply both sides to $\left(v_{i_{1}}, \ldots, v_{j k}\right)$, we have:

$$
a_{j 1, \ldots j k}=0
$$

Remark. If $f: v \rightarrow w$ is a linear transformation, then

$$
f^{*}: J^{k}(w) \longrightarrow \rho^{k}(v)
$$

defined by:

$$
f^{*} T\left(v_{1}, \ldots, v_{k}\right)=T\left(f\left(r_{1}\right), \ldots, f\left(r_{k}\right)\right)
$$

for $T \in J^{K}(w)$ and $v_{1}, \ldots, v_{k} \in V^{\prime}$, is also a linear transformation.
Check: $f^{*}(S \otimes T)=f^{*} S \otimes f^{*} T$.
Examples.
(a) An inner product T on V ($T: V \times V \longrightarrow \mathbb{R}$) is a 2 -tensor (i.e. $T \in \operatorname{JJ}^{2}(V)$)
that is:
(i) Symmetric: $T(v, w)=T(w, v)$ for all $v, w \in V$, and
(ii) Positive definite: $T(v, v) \geqslant 0$, for all $v \in V$.

Theorem. If T is an inner product on V, there exists a basis v_{1}, \ldots, v_{n} for V such that $T\left(v_{i}, v_{j}\right)=\delta_{i j}$. (i.e. an orthonormal basis). Consedvently, J an isomorphism $f: \mathbb{R}^{n} \longrightarrow V$ such that $T(f(x, y))=\langle x, y\rangle$, for $x, y \in \mathbb{R}^{n}$.
where \langle,$\rangle is the standard$ inner product on \mathbb{R}^{n}. In other words $f^{*} T=\langle$,
Proof. Net w_{1}, \ldots, w_{n} is a basis for v. Then define.

$$
\begin{aligned}
w_{1}^{\prime} & =w_{1} \\
w_{2}^{\prime} & =w_{2}-\frac{T\left(w_{1}^{\prime}, w_{2}\right)}{T\left(w_{1}^{\prime}, w_{1}^{\prime}\right)} \cdot w_{1}^{\prime} \\
\omega_{3}^{\prime} & =w_{3} \frac{-T\left(w_{1}^{\prime}, w_{3}\right)}{T\left(w_{1}^{\prime}, w_{1}^{\prime}\right)} \cdot w_{1}^{\prime}-\frac{T\left(w_{2}^{\prime} w_{3}\right)}{T\left(w_{2}^{\prime}, w_{2}^{\prime}\right)} \cdot \omega_{2}^{\prime}
\end{aligned}
$$

Then $T\left(\omega_{i}^{\prime}, \omega_{j}^{\prime}\right)=0$ if $i \neq j$ and $\omega_{i}^{\prime} \neq 0$ so that $T\left(\omega_{i}^{\prime}, \omega_{i}^{\prime}\right)>0$.
Defining $v_{i}=\frac{w_{i}{ }^{\prime}}{\left|\omega_{i}\right|}$, the map $e_{i} \xrightarrow{f} v_{i}$ is an 'isomorphism

Defn. A k-tensor w ω Jfk (v) is called alternating if

$$
\begin{aligned}
& w\left(v_{1}, \ldots, v_{i}, \ldots, v_{j}, \ldots, v_{k}\right) \\
& \quad=-w\left(v_{1}, \ldots, v_{j}, \ldots, v_{i}, \ldots, v_{k}\right) \text {, for }
\end{aligned}
$$ all $v_{1}, \ldots, v_{k} \in V$.

The set of all alternating tensors is a subspace of gK (V) denoted by $\Lambda^{K}(V)$.

We define

$$
\begin{aligned}
& \operatorname{Alt}(T)\left(v_{1}, \ldots, v_{k}\right) \\
& =\frac{1}{k!} \sum_{\sigma \in S_{k}} \operatorname{sgn} \sigma \cdot T\left(v_{\sigma}(1), \cdots, v_{\sigma(k)}\right)
\end{aligned}
$$

where S_{k} is permutation group of $\{1,2, \ldots, k\}$

Theorem.
(1) If $T \in \sigma^{k}(v)$, then $A 1 t(T) \in \wedge^{k}(V)$.
(2) If $w \in \Lambda^{K}(v)$, then $A 1 t(w)=w$.
(3) If $T_{\in} J_{k}(v)$, then $\operatorname{Alt}(\operatorname{Alt}(T))$

$$
=\operatorname{Alt}(T) .
$$

Proof
(1) Consider the transposition $(i j) \in S_{k}$, and let $\sigma^{\prime}=\sigma \cdot(i j)$ for each $\sigma \in S_{K}$.

Then

$$
\begin{aligned}
& \text { Then } \\
& \text { Alt }(T)\left(v_{1}, \ldots, v_{j}, \ldots, v_{i}, \ldots, v_{k}\right) \\
& =\frac{1}{k!} \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) T\left(v_{\sigma(1)}, \ldots, v_{\sigma(j)}, \ldots, v_{\sigma(i)}, \ldots, v_{\sigma(k)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{k!} \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) T\left(v_{\sigma^{\prime}(1)}, \ldots, v_{\sigma^{\prime}(i)}, \ldots, v_{\sigma^{\prime}(j)}, \ldots, v_{\left.\sigma^{\prime}(k)\right)}\right. \\
& =\frac{1}{k!} \sum_{\sigma^{\prime} \in S_{k}}-\operatorname{sgn}(\sigma) T\left(v_{\sigma^{\prime}(1)}, \ldots, v_{\left.\sigma^{\prime}(k)\right)}\right. \\
& =-\operatorname{Alt}(T)\left(v_{1}, \ldots, v_{k}\right)
\end{aligned}
$$

(2) If $w \in \Lambda^{k}(v)$ and

$$
\begin{align*}
& \sigma=(i, j) \text {, then } \omega\left(v_{\sigma(1)}, \ldots, v_{\sigma}(k)\right) \\
& =\operatorname{sgn}(\sigma) \cdot \omega\left(v_{1}, \ldots, v_{k}\right) . \tag{*}
\end{align*}
$$

Since every $\sigma \in S_{K}$ is a product of transpositions, (*) holds for all $\sigma \in S_{k}$.

Therefore,

$$
\begin{aligned}
& \operatorname{Alt}(\omega)\left(v_{1}, \ldots, v_{k}\right) \\
& \quad=\frac{1}{k!} \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) \cdot \omega\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) \\
& =\frac{1}{k!} \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\sigma)_{0} \\
& \quad=\omega\left(v_{1}, \ldots, v_{k}\right) \\
& \\
& =\omega\left(v_{1}, \ldots, v_{k}\right) .
\end{aligned}
$$

(3) Follows from (1) \& (2).

Note. $w \in \Lambda^{k}(v)$ and $\eta \in \Lambda^{l}(v)$

$$
\nRightarrow w \otimes \eta \in \Lambda^{k+l(v)}
$$

Defo. For $\omega \in \Lambda^{k}(v)$ and $\eta \in \Lambda^{l}(v)$, we define the wedge product by:

$$
\omega \wedge \eta:=\frac{(k+l)!}{k!l!} \operatorname{Ait}(\omega \otimes \eta)
$$

Lemma. Wedge product satisfies the following properties:
(a) $\left(\omega_{1}+\omega_{2}\right) \wedge \eta=\omega_{1} \wedge \eta+\omega_{2} \wedge \eta$
(b) $\omega \wedge\left(\eta_{1}+\eta_{2}\right)=\omega \wedge \eta_{1}+w \wedge \eta_{2}$
(c) $a w \wedge \eta=w \wedge a \eta=a(w \wedge \eta)$
(d) $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$
(e) $f^{*}(\omega \wedge \eta)=f^{*}(\omega) \wedge f^{*}(\eta)$

Theorem
(1) If $s \in$ of kn) and $T \in \sigma^{l}(v)$ and $\operatorname{Alt}(s)=0$, then

$$
\begin{aligned}
& \text { And } \operatorname{Alt}(S)=0, \\
& \operatorname{Alt}(T \otimes T)=\operatorname{Alt}(T \otimes S)=0
\end{aligned}
$$

(2) Alt (Alt (w®n)®O) $=\operatorname{Alt}(\omega \otimes \eta \otimes \theta)$

$$
=\operatorname{Alt}(\omega \otimes \operatorname{Alt}(n \otimes \theta))
$$

(3) If $w \in \Lambda^{k}(v), \eta \in \wedge^{l}(v)$, and $\theta \in \Lambda^{m}(v)$, then

$$
\begin{aligned}
(w \wedge \eta) \wedge \theta & =\omega \wedge(\eta \wedge \theta) \\
& =\frac{(k+l+m)!}{k!l!m!} \operatorname{Alt}(w \otimes \eta \otimes \theta)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& \text { Proof . } \\
& (k+l)!\text { Alt }(s \otimes T)\left(V_{1}, \ldots, V_{k+l}\right) \\
& =\sum_{\sigma \in S_{k+1}} \operatorname{sgn} \sigma \cdot s\left(V_{\sigma(1)}, \ldots, V_{\sigma}(k)\right) \\
& \cdot T\left(V_{\sigma(k+1)}, \ldots, V_{\sigma(k+l)}\right)
\end{aligned}
$$

Let $G C S_{k+1}$ consist of all σ that fix $k+1, \ldots, k+l$.

Then

$$
\begin{aligned}
& \sum_{\sigma \in G} \operatorname{sgn} \sigma \cdot S\left(V_{\sigma(1)}, \ldots V_{\sigma}(k)\right) \\
& {\left[\sum_{\sigma^{\prime} \in S_{k}} \operatorname{sgn} \sigma^{\prime} S\left(V_{\sigma^{\prime}(1)}, \ldots . V_{\sigma^{\prime}}(k)\right)\right] } \\
& \cdot T\left(V_{k+1}, \ldots, V_{k+l}\right)
\end{aligned}
$$

Now let $\sigma \in S_{k+1}>$ Gr,
let $G \cdot \sigma_{0}=\left\{\sigma_{0} \sigma_{0} \mid \sigma \in G\right\}$, and

$$
\begin{aligned}
& \text { et } G_{0} \sigma_{0}=\{ \\
& V_{\sigma_{0}(1)}, \ldots V_{\sigma_{0}}(k+l)=\omega_{1}, \ldots, \omega_{k+l} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Then } \\
& \sum_{\sigma \in G \cdot \sigma_{0}} \operatorname{sgn} \sigma \cdot S\left(V_{\sigma(1)} \cdot \ldots, V_{\sigma(k)}\right) \\
& =\left[\operatorname{sgn} \sigma_{0} \cdot \sum_{\sigma^{\prime} \in G} \operatorname{sgn} \sigma^{\prime} S\left(W_{\sigma^{\prime}(1)} \ldots W_{\sigma^{\prime}(k)}\right)\right. \\
& \cdot T\left(\omega_{k+1}, \ldots, \omega_{k+l}\right) \\
& =0 .
\end{aligned}
$$

(Note that $G \cap G \cdot \sigma_{0}=\varnothing$).
(2) We have

$$
\begin{aligned}
& \operatorname{Alt}(\operatorname{Alt}(\eta \otimes \theta)-n \otimes \theta) \\
& =\operatorname{Alt}(\eta \otimes \theta)-\operatorname{Alt}(\eta \otimes \theta)
\end{aligned}
$$

\Rightarrow By (1), we have

$$
\begin{aligned}
0= & \operatorname{Alt}(w \otimes \\
= & {[\operatorname{Alt}(n \otimes \theta)-n \otimes \theta]) } \\
& -\operatorname{Alt}(n \otimes \theta)) \\
& -\operatorname{Al\otimes } \otimes \otimes \theta)
\end{aligned}
$$

(3) $(\omega \wedge \eta) \wedge \theta$

$$
\begin{aligned}
& =\frac{(k+l+m)!}{(k+l)!m!} A 1 t((\omega \wedge n) \otimes \theta) \\
& =\frac{(k+l+m)!}{(k+l)!m!} \frac{(k+l)!}{k!l!} A 1 t(\omega \otimes \eta \otimes \theta)
\end{aligned}
$$

We denote both $\omega \wedge(\eta \wedge \theta)$ and ($\omega \wedge \eta$) $\wedge \theta$ by $\omega \wedge \eta \wedge \theta$.
Higher-order products are denoted by $\omega_{1} \wedge \omega_{2} \wedge \ldots \wedge \omega_{\text {. }}$.
Theorem The set of all

$$
\varphi_{i_{1}} \wedge \ldots \wedge \varphi_{i_{k}} 1 \leq i_{1}<i_{2}<\ldots<i_{k} \leqslant n
$$

is a basis for $\Lambda^{k}(V)$.
Consequently,

$$
\operatorname{dim} \Lambda^{k}(v)=\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Theorem. Net v_{1}, \ldots, v_{n} be a basis for V, and let $\omega \in \Lambda^{n}(v)$. If $w_{i}=\sum_{j=1}^{n} a_{i j} v_{j}$ for $1 \leq i \leq n$, then:

$$
\omega\left(w_{1}, \ldots w_{n}\right)=\operatorname{det}\left(a_{i j}\right) \omega\left(v_{1}, \ldots, v_{n}\right)
$$

Proof. Define $\eta \in \operatorname{Jg}^{n}\left(\mathbb{R}^{n}\right)$ by

$$
\begin{aligned}
& \eta\left(\left(a_{11}, \ldots, a_{1 n}\right), \ldots,\left(a_{n 1}, \ldots, a_{n n}\right)\right) \\
& \quad=\omega\left(\sum_{a_{1 j} v_{j}} . . ., \sum_{a_{n j}} v_{j}\right)
\end{aligned}
$$

Then $\eta \in \Lambda^{n}\left(\mathbb{R}^{n}\right)$ and

$$
\begin{aligned}
\eta & =\eta\left(e_{1}, \ldots, e_{n}\right) \cdot \operatorname{det}\left(a_{i j}\right) \\
& =\omega\left(v_{1}, \ldots v_{n}\right) \cdot \operatorname{det}\left(a_{i j}\right)
\end{aligned}
$$

Remark. By theorem, a nonzero $\omega \in \Lambda^{n}(v)$ splits bases of V into two groups:
(a) Those with $\omega\left(v_{1}, \ldots, v_{n}\right)<0$
(b) Those with $\omega\left(v_{1}, \ldots, v_{n}\right)>0$.

Two bases v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{n} are in the same group if given $\omega_{i}=\sum a_{i j} v_{j}$, then $\operatorname{det}\left(a_{i j}\right)>0$.

Defy. Either of these two groups is called an orientation for V.

In \mathbb{R}^{n}, the usual orientation is $\left[e_{1}, \ldots, e_{n}\right]$.
Remark. (a) Note that $\operatorname{dim} \Lambda^{n}\left(\mathbb{R}^{n}\right)=1$. In fact. det is often seenas the unique $\omega \in \Lambda^{n}\left(\mathbb{R}^{n}\right)$ such that $w\left(e_{1}, \ldots, e_{n}\right)=1$
Why? Suppose that T is an inner product and $v_{1}, \ldots v_{n} ; w_{1}, \ldots w_{n}$
are two bases which are orthonormal with respect to T with $w_{i}=\sum_{j=1}^{n} a_{i j} V_{j}$.

Then

$$
\begin{aligned}
& \text { Then } \\
& \begin{aligned}
\delta_{i j}=T\left(w_{i}, w_{j}\right) & =\sum_{k, l=1}^{n} a_{i k} a_{j l} T\left(v_{k}, v_{l}\right) \\
& =\sum_{k=1}^{n} a_{i k} a_{j k} \\
\Rightarrow A \cdot A^{T}=I & \Rightarrow \operatorname{det}(A)= \pm 1
\end{aligned}
\end{aligned}
$$

By theorem, if $\omega \in \Lambda^{n}(v)$ satisfies $\omega\left(v_{1}, \ldots, v_{n}\right) \pm 1$, then $\omega(w, \ldots, w n)= \pm 1$.
If an orientation μ for V has been given,
then $F!w \in \Lambda^{n}(V)$ such that $w\left(V_{1}, \ldots, V_{n}\right)=1$, whenever V_{1}, \ldots, V_{n} is an orthormal basis such that $\left[v_{1}, \ldots, v_{n}\right]=\mu$.
Defy.
This unique w is called the volume element of V, determined by T and μ.
Example dec is the volume element of \mathbb{R}^{n} with $\langle>$ and $\left[e_{1}, \ldots, e_{n}\right]$.
In fact, $\left|\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)\right|=$ volume of parallelopiped spanned by v_{1}, \ldots, v_{n}.

Defer. Let $v_{1}, \ldots, v_{n-1} \in \mathbb{R}^{n}$ and φ is defined by

$$
\varphi(w)=\operatorname{det}\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n-1} \\
w
\end{array}\right)
$$

Then $\varphi \in \Lambda^{\prime}\left(\mathbb{R}^{n}\right)$ and $\exists!z \in \mathbb{R}^{n}$ such that

$$
\begin{aligned}
& \text { that } \\
& \langle\omega, z\rangle=\varphi(w)=\operatorname{det}\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n-1} \\
\omega
\end{array}\right)
\end{aligned}
$$

This z is denoted by vix..xvn-1 and is called the cross-product of V_{1}, \ldots, V_{n-1}.
Lemma $(a) V_{\sigma(1)} \times \ldots \times V_{\sigma(n-1)}$

$$
\begin{aligned}
& \text { (1) } \times \cdots \times V_{\sigma(n-1)} \\
& =\operatorname{sgn} \sigma \cdot\left(V_{1} \times \cdots \times V_{n-1}\right)
\end{aligned}
$$

(b) $v_{1} x \cdots x a v_{i} x \cdots v_{n-1}=a \cdot\left(v_{1} x \cdots x v_{n}\right)$
(c)

$$
\begin{aligned}
v_{1} \cdots & \times\left(v_{i}+v_{i}\right) \\
= & v_{1} \times \cdots v_{n-1} \\
& +v_{1 x} \times \cdots \times v_{n-1} \times \cdots \times v_{n-1}
\end{aligned}
$$

Vector fields and Differential forms
Detn. For $p \in \mathbb{R}^{n}$, the tangent space of \mathbb{R}^{n} at P is defined by $\mathbb{R}_{p}^{n}=\left\{(p, v): v \in \mathbb{R}^{n}\right\}$.
Remark.
\mathbb{R}_{p}^{n} is a vector space with respect to:

$$
\begin{aligned}
& \text { et to: } \\
& \begin{aligned}
(p, v)+(p, w) & =(p, v+w) \\
a \cdot(p, v) & =(p, a v)
\end{aligned}
\end{aligned}
$$

Given p and $v \in \mathbb{R}_{p}^{n}$, we write $V_{p}=(v, P)$ and visualize it as a vector from the point p to $p+v$

The standard inner product \langle. on \mathbb{R}^{n} induces an inner product $\left.L_{1}\right\rangle_{p}$ on \mathbb{R}_{p}^{n} define by $\left\langle u p, v_{p}\right\rangle_{p}=\langle u, v\rangle$

Defn. A vector field is a function $F: \mathbb{R}^{n} \longrightarrow \bigcup_{x \in \mathbb{R}^{n}} \mathbb{R}^{n} x$ such that $F(x) \in \mathbb{R}_{p}^{n}$, for each $p \in \mathbb{R}^{n}$.

Remark.
For each $p \in \mathbb{R}^{n}, \exists F_{1}(p), \ldots, F_{n}(p)$ such that
$F(p)=\sum_{i=i}^{n} F_{i}(p)\left(e_{i}\right)_{p}$, where the F_{i} are the component functions.

Defer A vector field F is continuous (resp. diff) if each $F i$ is continuous (resp. diff).
Defn: If F, G are vector fields, and f is a function, we define:
(a) $(F+G)(p)=F(p)+G(p)$
(b) $\langle F, G\rangle(p)=\langle F(p), G(p)\rangle$
(c) $(f \cdot F)(p)=f(p) F(p)$

Defoe. If $F_{i}, 1 \leq i \leq n$, are vector fields, we define:

$$
\left(F_{1} \times \cdots \times F_{n-1}\right)(p)=F_{1}(p) \times \cdots \times F_{n-1}(p)
$$

Defn We define the divergence of a vector field F by

$$
\operatorname{div}(F)=\sum_{i=1}^{n} D_{i} F_{i}
$$

In symbols, if $\nabla=\sum_{i=1}^{n} D_{i} \cdot e_{i}$, then $\operatorname{div}(F)=\langle\nabla, F\rangle$
Defoe. Under this symbolism, we define the curl of F as the vector field

$$
\begin{aligned}
& \text { as the vector field } \\
& (\nabla \times F)(p)=\left|\begin{array}{ccc}
\left(e_{1}\right)_{p} & \left(e_{2}\right)_{p} & \left(e_{3}\right)_{p} \\
D_{1} & D_{2} & D_{3} \\
F_{1} & F_{2} & F_{3}
\end{array}\right|
\end{aligned}
$$

Defy. A function

$$
\omega: \mathbb{R}^{n} \longrightarrow \bigcup_{x \in \mathbb{R}^{n}} \Lambda^{k}\left(\mathbb{R}_{x}^{n}\right)
$$

Such that $\omega(p) \in \Lambda^{k}\left(\mathbb{R}_{p}^{n}\right)$, for each $p \in \mathbb{R}^{n}$ is called a differentiable k-form on \mathbb{R}^{n}
If $\varphi_{1}(p), \ldots, \varphi_{n}(p)$ is a dual basis to $\left(e_{1}\right)_{p}, \ldots,\left(e_{n}\right)_{p}$, then

$$
\omega(p)=\sum_{i_{k} \ldots<i_{k}} \omega_{i_{1} \ldots i_{k}(p) \cdot\left[\varphi_{i_{1}}(p) \wedge \ldots \wedge \varphi_{i_{k}}(p)\right]}
$$

Remark a The operations $\omega+\eta, f \cdot \omega$. $\omega \wedge \eta$ are well-defined.
(b) A function f is considered to kea o-form.

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, then $D f(p) \in \wedge^{\prime}\left(\mathbb{R}^{n}\right)$. So we define $d f$ by:

$$
d f(p)\left(v_{p}\right)=D f(p)(v)
$$

For any $x=\left(x_{1}, \ldots, x n\right) \in \mathbb{R}^{n}$, let

$$
x \stackrel{\pi_{i}}{\longmapsto} x_{i}
$$

Then

$$
d x_{i}(p)\left(v_{p}\right)=d \pi_{i}(p) v_{p}=D \pi_{i}(p)(v)
$$

(Here we view x_{i} as π_{i}) $=v_{i}$
So, $d x_{1}(p), \ldots, d x_{n}(p)$ is a dual
basis to $\left(e_{1}\right) p, \ldots,\left(e_{n}\right) p$.
Thus, every k-form can be written
as

$$
w=\sum_{i_{1}<\ldots<i_{k}} w_{i_{1} \ldots l_{k}} d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}}
$$

Theorem. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, then

$$
d f=D_{1} f \cdot d x_{n}+\cdots+D_{n} f \cdot d x_{n}
$$

i.e. in classical notation,

$$
\begin{aligned}
& d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\cdots+\frac{\partial f}{\partial x_{n}} d x n \\
& \left(d x_{1}(p)=d \pi_{i}(p)\right)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
d f_{p}\left(v_{p}\right) & =D f(p)(v) \\
& =\sum_{i=1}^{n} v_{i} D_{i} f(p) \\
& =\sum_{i=1}^{n} d x_{i}(p) v_{p} \cdot D_{i} f(p)
\end{aligned}
$$

Consider $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ and
$D f(p): \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$. Then
$f_{*}: \mathbb{R}_{p}^{n} \rightarrow \mathbb{R}_{f(p)}^{m}$ is defined by

$$
f_{*}(v p)=(D f(p)(v))_{f(p)} .
$$

This linear map induces a linear map

$$
f^{*}: \Lambda^{k}\left(\mathbb{R}_{f(p)}^{m}\right) \rightarrow \Lambda^{k}\left(\mathbb{R}_{p}^{n}\right)
$$

If w is a k-form on \mathbb{R}^{m} we define a k-form $f^{*} w$ on \mathbb{R}^{n} by:

$$
\left(f^{*} \omega\right)(p)=f^{*}(\omega(f(p))
$$

i.e. if $v_{1}, \ldots, v_{k} \in \mathbb{R}_{p}^{n}$, then

$$
\begin{aligned}
\left(f^{*} w\right)(p) & \left(v_{1}, \ldots, v_{k}\right) \\
& =w(f(p))\left(f_{*}\left(v_{1}\right), \ldots, f_{*}\left(v_{k}\right)\right)
\end{aligned}
$$

Theorem. If $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is differentiable, then:
(a)

$$
\begin{aligned}
f^{*}\left(d x_{i}\right) & =\sum_{j=1}^{n} D_{j} f_{i} \cdot d x_{j} \\
& =\sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}} d x_{j}
\end{aligned}
$$

(b) $f^{*}\left(\omega_{1}+w_{2}\right)=f^{*}\left(\omega_{1}\right)+f^{*}\left(\omega_{2}\right)$
(c) $f^{*}(g \cdot w)=(g \circ f) \cdot f^{*} w$
(d) $f^{*}(\omega \wedge \eta)=f^{*} \omega \wedge f^{*} \eta$

Proof

$$
\begin{aligned}
& \text { (a) } \\
& =\left(d x_{i}\right)(p)\left(v_{p}\right)=d x_{i}(f(p))\left(f_{*} v_{p}\right) \\
& =\sum_{j=1}^{n} v_{j} D_{j} f_{i}(p)\left(\sum_{j=1}^{n} v_{j} D_{j} f_{1}(p) \sum_{j=1}^{n} v_{j} D_{j} f_{m}(p)\right)_{f(p)} \\
& =\sum_{j=1}^{n} D_{j} f_{i}(p) \cdot d x_{j}(p)\left(v_{p}\right)
\end{aligned}
$$

Theorem. If $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is differentiable, then

$$
\begin{aligned}
& f^{*}\left(h d x_{1} \wedge \ldots \wedge d x_{n}\right) \\
& \quad=(h \circ f)\left(\operatorname{det} f^{\prime}\right) d x_{1} \wedge \ldots \wedge d x_{n}
\end{aligned}
$$

Proof. Since

$$
\begin{aligned}
& f^{*}\left(h d x_{1} \wedge \ldots \wedge d x_{n}\right) \\
& =(h \circ f) f^{*}\left(d x_{1} \wedge \ldots \wedge d x_{n}\right),
\end{aligned}
$$

it suffices to show that

$$
f^{*}\left(d x_{1} \wedge \cdot \wedge d x_{n}\right)=\operatorname{det}(D f) d x_{1} \wedge \ldots \wedge d x_{n}
$$

let $p \in \mathbb{R}^{n}$ and let $A=\left(a_{i j}\right)=D f(p)$
Then

$$
\begin{aligned}
& f^{*}\left(d x_{1} \wedge \ldots \wedge d x_{n}\right)\left(e_{1}, \ldots, e_{n}\right) \\
& \quad=d x_{1} \wedge \ldots \wedge d x_{n}\left(f_{*} e_{1}, \ldots, f_{*} e_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =d x_{1} \wedge \ldots \wedge d x_{n}\left(\sum_{i=1}^{n} a_{i 1} e_{i}, \ldots, \sum_{i=1}^{n} a_{i n} e_{i}\right) \\
& =\operatorname{det}\left(a_{i j}\right) \cdot d x_{1} \wedge \ldots \wedge d x_{n}\left(e_{1}, \ldots, e_{n}\right)
\end{aligned}
$$

Defn Given the k-form

$$
w=\sum_{i_{1}<\cdots<i_{k}} \omega_{i_{1} \ldots i_{k}} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}} \text {, }
$$

we define a $(k+1)$-form $d w$, the differential of w, by

$$
\begin{aligned}
& d w=\sum_{i_{1}<\ldots<i_{k}} d w_{i_{1} \ldots i_{k}} \wedge d x_{i_{1} \wedge} \wedge . . d x_{i_{k}} \\
&=\sum_{i_{1}<\ldots<i_{k}} \sum_{\alpha=1}^{n} D_{\alpha}\left(w_{i_{1}, \ldots, i_{k}}\right) \cdot d x_{\alpha} \\
& \wedge d x_{i_{1}} \wedge \cdots d x_{i_{k}}
\end{aligned}
$$

Theorem.
(i) $d(w+\eta)=d w+d n$
(ii) If ω is a k-form and η is a 1 -form, then

$$
d(w \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta \text {. }
$$

(iii) $d(d \omega)=0$ (ie. $d^{2}=0$)
(iv) If w is a k-form on \mathbb{R}^{m} and $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is diff, then $f^{*}(d \omega)=d\left(f^{*} \omega\right)$.

Detn. A form ω is closed if $d \omega=0$ and exact if $\omega=d \eta$, for some η.
Remark (i) By theorem, every exact form is closed.
Conversely, if $\omega=P d x+Q d y$ is a 1 -form in \mathbb{R}^{2}, then

$$
\begin{aligned}
d w= & \left(D_{1} P d x+D_{2} P d y\right) \wedge d x \\
& +\left(D_{1} O_{1} d x+D_{2} Q d y\right) \wedge d y \\
= & \left(D_{1} Q-D_{2} P\right) d x \wedge d y
\end{aligned}
$$

So, if $d w=0$, then

$$
D_{1} Q=D_{2} P .
$$

Ja function f such that

$$
\begin{aligned}
& \text { Ja function } f \text { such that } \\
& \omega=d f=D_{1} f d x+D_{2} f d y \text {. }(H W)
\end{aligned}
$$

(ii) However, if ω is defined only on a subset of \mathbb{R}^{2} For example, consider

$$
\omega=-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y
$$

on $\mathbb{R}^{2}-\{0\}$
Then $\omega=d \theta$, where

$$
\begin{aligned}
& \text { Then } \omega=d \theta, \text { where } \\
& \theta(x, y)= \begin{cases}\tan ^{-1}(y / x) & x, y>0 \\
\pi+\tan ^{-1}(y / x) & x<0 \\
2 \pi+\tan ^{-1}(y / x) & x>0, y<0 \\
\pi / 2 & x=0, y>0 \\
3 \pi / 2 & x=0, y<0\end{cases}
\end{aligned}
$$

which is not continuous on $\mathbb{R}^{2}-\{0\}$.

If $\omega=d f$, for some $f: \mathbb{R}^{2}-0 \rightarrow \mathbb{R}$, then $D_{1} f=D_{1} \theta$ and $D_{2} f=D_{2} \theta$ $\Rightarrow f=\theta+c \Rightarrow f$ cannot exist.
(iii) Suppose that $\omega=\sum_{i=1}^{n} \omega_{i} d x_{i}$ is a 1 -form on \mathbb{R}^{n} and

$$
w=d f=\sum_{i=1}^{n} D_{i} f \cdot d x_{i}
$$

Since

$$
\begin{aligned}
f(x) & =\int_{0}^{1} \frac{d}{d t} f(t x) d x \\
& =\int_{0}^{1} \sum_{i=1}^{n} D_{i} f(t x) \cdot x_{i} d t \\
& =\int_{0}^{1} \sum_{i=1}^{n} \omega_{i}(t x) \cdot x_{i} d t
\end{aligned}
$$

This suggests:

$$
\begin{aligned}
& \text { suggests: } \\
& I_{\omega}(x)=\int_{0}^{1} \sum_{i=1}^{n} \omega_{i}(t x) \cdot x_{i} d t
\end{aligned}
$$

This is well-defined on a open set $A \subset \mathbb{R}^{n}$ such that if $x \in A$, then the line joining 0 to x is in A. Such an open set is called star-shaped with respect to 0 .

It can be shown that $\omega=d\left(I_{\omega}\right)$, provided that $d w=0$.

Theorem (Poincare Lemma). If $A \subset \mathbb{R}^{n}$ is an open set estar-shaped with respect to 0 , then every closed form on A is exact.
Proof. We will define a function I from l-forms to $(l-1)$-forms such that:

$$
I(0)=0 \text { and } \omega=\frac{I(d \omega)+d(I \omega)}{T h e n}
$$

for any form ω. Then

$$
\omega=d(I \omega) \text {, if } d \omega=0 \text {. }
$$

let $\omega=\sum_{i_{1}<\ldots<i l} \omega_{i_{1}}, \ldots i_{l} d x_{i_{1}} \ldots \cdot \wedge d x_{i_{l}}$
Since A is star shaped, we define:

$$
\begin{aligned}
& I \omega(x)= \sum_{i_{1}<\cdots \alpha i_{\ell} \alpha=1} \\
& \sum_{1}^{x}(-1)^{\alpha-1} \\
&\left(\int_{0}^{1} t^{\ell-1} \omega_{i_{1}, \ldots i_{l}}(t x) d t\right) x^{i_{\alpha}} \\
& d x_{i_{1}} \wedge \ldots \wedge d x_{i_{2}} \wedge \cdots \wedge d x_{i_{l}}
\end{aligned}
$$

Showing that

$$
\omega=I(d \omega)+d(I \omega) \text { is }
$$ left as an exercise

Geometric Properties
Defn. A singularn-cube in $A \subset \mathbb{R}^{n}$ is a continuous function $c:[0,7]^{n} \longrightarrow A$.
Example
(a) A singular 0 -cube is an $f:\{0\} \longrightarrow A$.
(b) The standard n-cube in \mathbb{R}^{n} is $I^{n}:[0,]^{n} \rightarrow \mathbb{R}^{n}$ defined by $I^{n}(x)=x, \forall x$.

Deft. A formal sum of the form $\sum_{i=1}^{k} a_{i} c_{i}$, where $a_{i} \in \mathbb{Z}$ and each C_{i} is a singular n-cube in A is called an n-chain in A.

Defn. (a) For each $i, 1 \leqslant i \leqslant n$, we define two singular $(n-1)-c u b e s$ $I_{(i, 0)}^{n}$ and $I_{(i, 1)}^{n}$ as follows:

$$
\begin{aligned}
I_{(i, 0)}^{n}(x): & =I^{n}\left(x_{1}, \ldots, x_{i-1}, 0, x_{i}, \ldots, x_{n-1}\right) \\
& =\left(x_{1}, \ldots, x_{i-1}, 0, x_{i}, \ldots, x_{n-1}\right) \\
I^{n}(i, 1)(x): & =I^{n}\left(x_{1}, \ldots, x_{i-1}, x_{i}, \ldots, x_{n-1}\right) \\
& =\left(x_{1}, \ldots, x_{i-1}, 1, x_{i}, \ldots, x_{n-1}\right)
\end{aligned}
$$

$I_{(i, 0)}^{n}$ and $I_{(i, 1)}^{n}$ are called the $(i, 0)$-face and $(i, 1)$-face of I^{n}. respectively.
(b) We define

$$
\begin{aligned}
& \text { Ne define } \\
& \left.\partial I^{n}=\sum_{i=1}^{n} \sum_{\alpha=0,1}(-1)^{i+\alpha} I_{(i, \alpha)}^{n}\right) \text { ar }
\end{aligned}
$$

(C) For a general singular n-cube $C:[0,1]^{n} \longrightarrow A$, we define $C_{(i, \alpha)}=\operatorname{co}\left(I_{(i, \alpha)}^{n}\right)$
Then we define,

$$
\partial c=\sum_{i=1}^{n} \sum_{\alpha=0,1}(-1)^{i+\alpha} c(i, \alpha)
$$

(d) Finally, we define the Boundary of the n-chain
$\sum a_{i} c_{i}$ by:

$$
\partial\left(\sum a_{i} c_{i}\right)=\sum a_{i} \partial\left(c_{i}\right)
$$

Theorem. If c is a chain in A, then $\partial(\partial c)=0$. Briefly, $\partial^{2}=0$.
Proof. For $i \leqslant j$ and x $\in[0,1]^{n-2}$, we have:

$$
\begin{array}{r}
\left(I_{(i, \alpha)}^{n}\right)_{(j, \beta)}(x)=I_{(i, \alpha)}^{n}\left(I_{(j, \beta)}^{n-1}(x)\right) \\
=\frac{I_{(i, \alpha)}^{n}\left(x_{1}, \ldots, x_{j-1}, \beta, x_{j}, \ldots x_{n-2}\right)}{} \begin{array}{r}
n \\
I^{n}\left(x_{1}, \ldots x_{i-1}, \alpha, x_{i}, \ldots, x_{j-1},\right. \\
\left.\beta, x_{j}, \ldots x_{n-2}\right)
\end{array}
\end{array}
$$

Similarly,

$$
\begin{aligned}
& \left(I^{n}(j+1, \beta)\right)(i, \alpha) \\
& =I^{n}\left(x_{1,}, \cdot x_{i-1}, \alpha, x_{i}, \ldots, x_{j-1}, \beta,\right. \\
& \left.x_{j,}, \cdots, x_{n-2}\right) \\
& \Longrightarrow\left(I_{(i, \alpha)}^{n}\right)_{(j, \beta)}=\left(I_{j+1, \beta)}^{n}\right)(i, \alpha),
\end{aligned}
$$

for $i \leq j$.
Thus, it follows easily that:

$$
\left(C_{(i, \alpha)}\right)_{j, \beta)}=\left(C_{(j+1, \beta)}\right)(i, \alpha) \text {, for }
$$

Now,

$$
\partial(\partial c)=\partial\left(\sum_{i=1}^{n} \sum_{\alpha=0,1}(-1)^{i+\alpha} C_{(i, \alpha)}\right)
$$

$$
\begin{gathered}
=\sum_{i=1}^{n} \sum_{\alpha=0,1} \sum_{j=1}^{n-1} \sum_{\beta=0,1}(-1)^{i+\alpha+j+\beta}(C(i, \alpha))_{(i, \beta)} \\
=0 \quad(\text { check! })
\end{gathered}
$$

Remark. If $\partial c=0$, does $\exists a$ d in A such that $c=\partial d$.

Answer. no
Consider $\left.C:[0,1] \longrightarrow \mathbb{R}^{2}-20\right\}$ by $c(t)=(\cos (2 \pi n t), \sin (2 \pi n t))$, where $n \in \mathbb{Z}-\{0\}$. Then $c(1)=c(0)$, so $\partial c=0$. But \exists no 2-chain c^{\prime} in $\mathbb{R}^{2}-0$ such that $\partial c^{\prime}=c$.

Stoke's Theorem
If ω is a k-form on $[0,1]^{k}$, then Ja unique f such that:

$$
\omega=f d x_{1} \wedge \ldots \wedge d x_{k}
$$

Defy. We define

$$
\int_{[0,1] k} \omega=\int_{[0,1 k} f=\int_{[0,1]^{k}} f\left(x_{1}, \ldots, x_{k}\right) d x_{1} \cdots d x_{k}
$$

If w is a k-form on A and c is a singular k-cube in A. we define

$$
\int_{c} \omega=\int_{[0,1]} c^{*} \omega
$$

Remark (a) In particular, we have:

$$
\begin{aligned}
\int_{I^{k}} f d x_{1} \wedge \ldots \wedge d x_{k} & =\int_{[0,1]^{k}}\left(I^{k}\right)^{*}\left(f d x_{1} \wedge \ldots \wedge d x_{k}\right) \\
& =\int_{[0,1]^{k}} f\left(x_{1}, \ldots, x_{k}\right) d x_{1} \ldots d x_{k}
\end{aligned}
$$

(b) When $k=0$, a 0 -form w is a function and $c:\{0\} \longrightarrow A$ is a singular 0 -cube in A. So, we define:

$$
\int_{c} \omega=\omega(c(0))
$$

The integral w over a k-chain $c=\sum a i c i$ is defined by:

$$
\int_{c} \omega=\sum a i \int_{c_{i}} \omega
$$

(C) The integral of a 1-form over a 1-chain is often called a line integral.
If $P d x+Q d y$ is a 1 -form on \mathbb{R}^{2} and $c:[0,1] \rightarrow \mathbb{R}^{2}$ is a singular 1 -cube(curve), then it can be shown that:

$$
\begin{aligned}
& \int_{c} P d x+Q d y \\
& =\lim _{i=1}^{n}\left(c_{1}(t i)-c_{1}(t i-1)\right) \cdot P(c(t i)) \\
& \quad+\left(c_{2}(t i)-c_{2}(t i-1)\right) \cdot Q(c(t i))_{1}
\end{aligned}
$$

where t_{0}, \ldots, t_{n} is a partition of $[0,1]$ and the \lim is taken over all partitions.

Theorem (stoke's Theorem). If ω is a (k-1)-form on an open set $A \subset \mathbb{R}^{n}$ and c is a k-chain in A, then:

$$
\int_{c} d w=\int_{\partial c} w \text {. }
$$

Proof. Suppose that $c=I k$ and w is a $(k-1)$-form on $[0,1]^{k}$. Then ω is the sum of $(k-1)$-forms of the type:

$$
f d x_{i} \wedge \ldots \cdot d x_{i} \wedge \ldots \wedge d x_{k}-(*)
$$

So it suffices to show the theorem for forms of the type (*).

Note that

$$
\begin{aligned}
& \int_{0,1]} I_{k-1}^{k}(j, a)^{*}\left(f d x_{1} \wedge \ldots \wedge d x_{i} \wedge \ldots \wedge d x_{k}\right) \\
& \quad=\left\{\begin{array}{l}
0 \\
\int_{[0, j k} f\left(x_{1}, \ldots, \alpha, \ldots, x_{k}\right) d x_{1} \ldots d x_{k},
\end{array} \quad \text { if } j \neq i\right.
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \int_{\partial I^{k}} f d x_{1} \wedge \ldots \wedge d \hat{x}_{i} \ldots \wedge d x_{k} \\
& =\sum_{j=1}^{k} \sum_{\alpha=0,1}(-1)^{j+\alpha} \int_{[0,]^{k-1}} I_{(j, x)}^{k}\left(f d x_{1} \wedge \ldots d x_{i}\right. \\
& \left.=(-1)^{i+1} \int_{\left[0, \eta^{k}\right.} f\left(x_{1}, \ldots, 1, \ldots, x_{k}\right) d x_{1} \ldots . . . d x_{k}\right) \\
& \quad+(-1)^{i} \int_{[0,1]} f\left(x_{1}, \ldots, 0, \ldots x_{k}\right) d x_{1} \ldots d x_{k}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \int_{I^{k}} d\left(f d x_{1} \wedge \ldots \wedge d x_{i} \wedge \ldots \wedge d x_{k}\right) \\
& \quad=\int_{\left[0, \eta^{k}\right.} D_{i} f d x_{i} \wedge d x_{1} \wedge \ldots \wedge d \hat{x}_{i} \wedge \ldots \wedge d x_{k} \\
& \quad=(-1)^{i-1} \int_{[0,1] k} D_{i} f
\end{aligned}
$$

By Fubinis theorem and FTC, we have

$$
\begin{aligned}
& \text { have } \\
& \int_{I^{k}} d\left(f d x_{1} \wedge \ldots \wedge \hat{d}_{i} \wedge \ldots \wedge d x_{k}\right) \\
& =(-1)^{i-1} \int_{0}^{1} \ldots\left(\int_{0}^{1} D_{i} f\left(x_{1}, \ldots, x_{k}\right) d x_{i}\right) \\
& =(-1)^{i-1} \int_{0}^{1} \ldots \int_{0}^{1}\left[f\left(x_{1}, \ldots, 1, \ldots, x_{k}\right)\right. \\
& \\
& \left.-f\left(x_{1}, \ldots, 0, \ldots, x_{k}\right)\right] \\
& d x_{1}, \ldots d x_{i} \ldots d x_{k}
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{i-1} \int_{[0,)^{k}} f\left(x_{1}, \ldots 1, \ldots, x_{k}\right) d x_{1} \ldots d x_{k} \\
& +(-1)^{i} \int_{[0,]^{k}} f\left(x_{1}, \ldots, 0, \ldots x_{k}\right) d x_{1} \ldots d x_{k}
\end{aligned}
$$

Thus, $\int_{I^{k}} d \omega=\int_{\partial I^{k}}^{\omega}$
For an arbitrary k-cube, it follows that:

$$
\int_{\partial c} \omega=\int_{\partial I^{k}}^{c^{*} \omega}
$$

Therefore,

$$
\begin{aligned}
& \text { fore, } \\
& \begin{aligned}
\int_{c} d \omega=\int_{I^{k}} c^{*}(d \omega) & =\int_{I^{k}} d\left(c^{*} \omega\right) \\
& =\int_{\partial I^{k}} c^{*} \omega=\int_{\partial c} \omega
\end{aligned}
\end{aligned}
$$

Finally, if c is a k-chain Zaici, then

$$
\begin{aligned}
\int_{c} d \omega=\sum a_{i} \int_{c_{i}} d \omega & =\sum a_{i} \int_{\partial c_{i}} \omega \\
& =\int_{\partial c} \omega
\end{aligned}
$$

Integration on chains
Multilinear algebra
Defy. Net V be a vector Space over \mathbb{R}, and let $V^{k}=V \times \ldots \times V$ be the k-fold product. A function $T: V \xrightarrow{\kappa} \mathbb{R}$ is said to be multilinear if for each i with $1 \leq i \leqslant k$, we have:

$$
\begin{aligned}
& \text { (a) } \begin{aligned}
& \left(v_{1}, \ldots, v_{i}+v_{i}, \ldots, v_{k}\right) \\
= & T\left(v_{1}, \ldots v_{i}, \cdots v_{k}\right) \\
& +T\left(v_{1}, \cdots v_{i}, \ldots v_{k}\right)
\end{aligned}
\end{aligned}
$$

(b) $T\left(v_{1}, \ldots, a v_{i}, \ldots v_{k}\right)$

$$
=a T\left(v_{1}, \ldots v_{i}, \ldots v_{k}\right)
$$

Defn. A multilinear function $T: V^{k} \longrightarrow \mathbb{R}$ is called a k.tensor on V.
Remark. The set of all k-tensors $J^{k}(V)$ on V is a Vector space over H
Defoe. For $S \in J^{K}(V)$ and $T \in J^{l}(V)$, we define the tensor product $S \otimes T \in \sigma^{k+l}(v)$
by:

$$
\begin{aligned}
& S \otimes T\left(v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{e}\right) \\
& \quad=S\left(v_{1}, \ldots, v_{k}\right) \cdot T\left(v_{k+1}, \ldots, v_{l}\right)
\end{aligned}
$$

Remark. Note that

$$
\overline{S \otimes T} \neq T \otimes S
$$

Lemma. Tensor product \otimes satisfies the following properties.

$$
(a)\left(S_{1}+S_{2}\right) \otimes T=S_{1} \otimes T+S_{2} \otimes T
$$

(b) $S \otimes\left(T_{1}+T_{2}\right)=S \otimes T_{1}+S \otimes T_{2}$
(c) $(a S) \otimes T=S \otimes a T=a(S \otimes T)$
(d) $(S \otimes T) \otimes U=(S \otimes T) \otimes U$

Remark
(i) The tensor products in
(d) are usually denoted by S®T®U ; higher products
$T_{1} \otimes \ldots \otimes$ Tr are defined similarly.
(ii) $J^{\prime}(V)=V^{*}$ (dual space)

Theorem. Net v_{1}, \ldots, v_{n} be a basis for V, and let $\varphi_{1}, \ldots, \varphi_{n}$ Be basis for V^{*} so that $\varphi_{i}\left(V_{j}\right)=\delta_{i j}$. Then the set of all k-fold tensor products

$$
\begin{aligned}
& \text {-fold ensor } \\
& \varphi_{i_{1} \otimes} \otimes \varphi_{i k} 1 \leqslant i_{1}, \ldots, i_{k} \leqslant n \\
& c^{k}(v) .
\end{aligned}
$$

is a basis for $J^{k}(v)$.

Consequently, $\operatorname{dim}\left(J^{k}(v)\right)=n^{k}$.
Proof
Observe that
$\left(\varphi_{i, \otimes}, \ldots \otimes \varphi_{i k}\right)\left(v_{j}, \ldots, v_{j_{k}}\right)$
$=\delta_{i, j,} \ldots \delta_{i k, j k}$
$= \begin{cases}1, & \text { if } j r=i, \text { for } 1 \leq r \leq k \\ 0, & \text { otherwise. }\end{cases}$
If $\omega_{1}, \ldots, \omega_{k}$ are k vectors with $w_{i}=\sum_{j=1}^{n} a_{i j} v_{j}$ and $T \in J^{k}(v)$, then:

$$
T\left(w_{1}, \ldots, w_{k}\right)=\sum_{j_{1}, \ldots j_{k}=1}^{n} a_{1, j 1} \ldots\left(a_{k}, \ldots v_{j k}\right)
$$

$$
\begin{aligned}
& =\sum_{i_{1}, \ldots i_{k}=1}^{n} T\left(v_{\left.i_{1}, \ldots v_{i_{k}}\right) \cdot\left(\varphi_{i_{1} \otimes \ldots \otimes}\left(\varphi_{i_{k}}\right)\right.}^{\left(w_{1}, \ldots, w_{k}\right)}\right. \\
& \Rightarrow T=\sum_{i_{1}, \ldots i_{k}=1}^{n} T\left(v_{i_{1}}, \ldots v_{i_{k}}\right) \cdot\left(\varphi_{\left.i_{1} \otimes \ldots \otimes \varphi_{i_{k}}\right)}\right. \\
& \Rightarrow \varphi_{i_{1} \otimes} \ldots \otimes \varphi_{i_{k}} \operatorname{span} J^{k}(v) .
\end{aligned}
$$

Now suppose that

$$
\sum_{i_{1}, \ldots i_{k}=1}^{n} a_{i}, \ldots, i_{k} \cdot \varphi_{i, \otimes} \otimes \otimes \varphi_{i_{k}}=0
$$

Apply both sides to $\left(v_{i_{1}}, \ldots, v_{j k}\right)$, we have:

$$
a_{j 1, \ldots j k}=0
$$

Remark. If $f: v \rightarrow w$ is a linear transformation, then

$$
f^{*}: J^{k}(w) \longrightarrow \rho^{k}(v)
$$

defined by:

$$
f^{*} T\left(v_{1}, \ldots, v_{k}\right)=T\left(f\left(r_{1}\right), \ldots, f\left(r_{k}\right)\right)
$$

for $T \in J^{K}(w)$ and $v_{1}, \ldots, v_{k} \in V^{\prime}$, is also a linear transformation.
Check: $f^{*}(S \otimes T)=f^{*} S \otimes f^{*} T$.
Examples.
(a) An inner product T on V ($T: V \times V \longrightarrow \mathbb{R}$) is a 2 -tensor (i.e. $T \in \operatorname{JJ}^{2}(V)$)
that is:
(i) Symmetric: $T(v, w)=T(w, v)$ for all $v, w \in V$, and
(ii) Positive definite: $T(v, v) \geqslant 0$, for all $v \in V$.

Theorem. If T is an inner product on V, there exists a basis v_{1}, \ldots, v_{n} for V such that $T\left(v_{i}, v_{j}\right)=\delta_{i j}$. (i.e. an orthonormal basis). Consedvently, J an isomorphism $f: \mathbb{R}^{n} \longrightarrow V$ such that $T(f(x, y))=\langle x, y\rangle$, for $x, y \in \mathbb{R}^{n}$.
where \langle,$\rangle is the standard$ inner product on \mathbb{R}^{n}. In other words $f^{*} T=\langle$,
Proof. Net w_{1}, \ldots, w_{n} is a basis for v. Then define.

$$
\begin{aligned}
w_{1}^{\prime} & =w_{1} \\
w_{2}^{\prime} & =w_{2}-\frac{T\left(w_{1}^{\prime}, w_{2}\right)}{T\left(w_{1}^{\prime}, w_{1}^{\prime}\right)} \cdot w_{1}^{\prime} \\
\omega_{3}^{\prime} & =w_{3} \frac{-T\left(w_{1}^{\prime}, w_{3}\right)}{T\left(w_{1}^{\prime}, w_{1}^{\prime}\right)} \cdot w_{1}^{\prime}-\frac{T\left(w_{2}^{\prime} w_{3}\right)}{T\left(w_{2}^{\prime}, w_{2}^{\prime}\right)} \cdot \omega_{2}^{\prime}
\end{aligned}
$$

Then $T\left(\omega_{i}^{\prime}, \omega_{j}^{\prime}\right)=0$ if $i \neq j$ and $\omega_{i}^{\prime} \neq 0$ so that $T\left(\omega_{i}^{\prime}, \omega_{i}^{\prime}\right)>0$.
Defining $v_{i}=\frac{w_{i}{ }^{\prime}}{\left|\omega_{i}\right|}$, the map $e_{i} \xrightarrow{f} v_{i}$ is an 'isomorphism

Defn. A k-tensor w ω Jfk (v) is called alternating if

$$
\begin{aligned}
& w\left(v_{1}, \ldots, v_{i}, \ldots, v_{j}, \ldots, v_{k}\right) \\
& \quad=-w\left(v_{1}, \ldots, v_{j}, \ldots, v_{i}, \ldots, v_{k}\right) \text {, for }
\end{aligned}
$$ all $v_{1}, \ldots, v_{k} \in V$.

The set of all alternating tensors is a subspace of gK (V) denoted by $\Lambda^{K}(V)$.

We define

$$
\begin{aligned}
& \operatorname{Alt}(T)\left(v_{1}, \ldots, v_{k}\right) \\
& =\frac{1}{k!} \sum_{\sigma \in S_{k}} \operatorname{sgn} \sigma \cdot T\left(v_{\sigma}(1), \cdots, v_{\sigma(k)}\right)
\end{aligned}
$$

where S_{k} is permutation group of $\{1,2, \ldots, k\}$

Theorem.
(1) If $T \in \sigma^{k}(v)$, then $A 1 t(T) \in \wedge^{k}(V)$.
(2) If $w \in \Lambda^{K}(v)$, then $A 1 t(w)=w$.
(3) If $T_{\in} J_{k}(v)$, then $\operatorname{Alt}(\operatorname{Alt}(T))$

$$
=\operatorname{Alt}(T) .
$$

Proof
(1) Consider the transposition $(i j) \in S_{k}$, and let $\sigma^{\prime}=\sigma \cdot(i j)$ for each $\sigma \in S_{K}$.

Then

$$
\begin{aligned}
& \text { Then } \\
& \text { Alt }(T)\left(v_{1}, \ldots, v_{j}, \ldots, v_{i}, \ldots, v_{k}\right) \\
& =\frac{1}{k!} \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) T\left(v_{\sigma(1)}, \ldots, v_{\sigma(j)}, \ldots, v_{\sigma(i)}, \ldots, v_{\sigma(k)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{k!} \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) T\left(v_{\sigma^{\prime}(1)}, \ldots, v_{\sigma^{\prime}(i)}, \ldots, v_{\sigma^{\prime}(j)}, \ldots, v_{\left.\sigma^{\prime}(k)\right)}\right. \\
& =\frac{1}{k!} \sum_{\sigma^{\prime} \in S_{k}}-\operatorname{sgn}(\sigma) T\left(v_{\sigma^{\prime}(1)}, \ldots, v_{\left.\sigma^{\prime}(k)\right)}\right. \\
& =-\operatorname{Alt}(T)\left(v_{1}, \ldots, v_{k}\right)
\end{aligned}
$$

(2) If $w \in \Lambda^{k}(v)$ and

$$
\begin{align*}
& \sigma=(i, j) \text {, then } \omega\left(v_{\sigma(1)}, \ldots, v_{\sigma}(k)\right) \\
& =\operatorname{sgn}(\sigma) \cdot \omega\left(v_{1}, \ldots, v_{k}\right) . \tag{*}
\end{align*}
$$

Since every $\sigma \in S_{K}$ is a product of transpositions, (*) holds for all $\sigma \in S_{k}$.

Therefore,

$$
\begin{aligned}
& \operatorname{Alt}(\omega)\left(v_{1}, \ldots, v_{k}\right) \\
& \quad=\frac{1}{k!} \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) \cdot \omega\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) \\
& =\frac{1}{k!} \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\sigma)_{0} \\
& \quad=\omega\left(v_{1}, \ldots, v_{k}\right) \\
& \\
& =\omega\left(v_{1}, \ldots, v_{k}\right) .
\end{aligned}
$$

(3) Follows from (1) \& (2).

Note. $w \in \Lambda^{k}(v)$ and $\eta \in \Lambda^{l}(v)$

$$
\nRightarrow w \otimes \eta \in \Lambda^{k+l(v)}
$$

Defo. For $\omega \in \Lambda^{k}(v)$ and $\eta \in \Lambda^{l}(v)$, we define the wedge product by:

$$
\omega \wedge \eta:=\frac{(k+l)!}{k!l!} \operatorname{Ait}(\omega \otimes \eta)
$$

Lemma. Wedge product satisfies the following properties:
(a) $\left(\omega_{1}+\omega_{2}\right) \wedge \eta=\omega_{1} \wedge \eta+\omega_{2} \wedge \eta$
(b) $\omega \wedge\left(\eta_{1}+\eta_{2}\right)=\omega \wedge \eta_{1}+w \wedge \eta_{2}$
(c) $a w \wedge \eta=w \wedge a \eta=a(w \wedge \eta)$
(d) $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$
(e) $f^{*}(\omega \wedge \eta)=f^{*}(\omega) \wedge f^{*}(\eta)$

Theorem
(1) If $s \in$ of kn) and $T \in \sigma^{l}(v)$ and $\operatorname{Alt}(s)=0$, then

$$
\begin{aligned}
& \text { And } \operatorname{Alt}(S)=0, \\
& \operatorname{Alt}(T \otimes T)=\operatorname{Alt}(T \otimes S)=0
\end{aligned}
$$

(2) Alt (Alt (w®n)®O) $=\operatorname{Alt}(\omega \otimes \eta \otimes \theta)$

$$
=\operatorname{Alt}(\omega \otimes \operatorname{Alt}(n \otimes \theta))
$$

(3) If $w \in \Lambda^{k}(v), \eta \in \wedge^{l}(v)$, and $\theta \in \Lambda^{m}(v)$, then

$$
\begin{aligned}
(w \wedge \eta) \wedge \theta & =\omega \wedge(\eta \wedge \theta) \\
& =\frac{(k+l+m)!}{k!l!m!} \operatorname{Alt}(w \otimes \eta \otimes \theta)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& \text { Proof . } \\
& (k+l)!\text { Alt }(s \otimes T)\left(V_{1}, \ldots, V_{k+l}\right) \\
& =\sum_{\sigma \in S_{k+1}} \operatorname{sgn} \sigma \cdot s\left(V_{\sigma(1)}, \ldots, V_{\sigma}(k)\right) \\
& \cdot T\left(V_{\sigma(k+1)}, \ldots, V_{\sigma(k+l)}\right)
\end{aligned}
$$

Let $G C S_{k+1}$ consist of all σ that fix $k+1, \ldots, k+l$.

Then

$$
\begin{aligned}
& \sum_{\sigma \in G} \operatorname{sgn} \sigma \cdot S\left(V_{\sigma(1)}, \ldots V_{\sigma}(k)\right) \\
& {\left[\sum_{\sigma^{\prime} \in S_{k}} \operatorname{sgn} \sigma^{\prime} S\left(V_{\sigma^{\prime}(1)}, \ldots . V_{\sigma^{\prime}}(k)\right)\right] } \\
& \cdot T\left(V_{k+1}, \ldots, V_{k+l}\right)
\end{aligned}
$$

Now let $\sigma \in S_{k+1}>$ Gr,
let $G \cdot \sigma_{0}=\left\{\sigma_{0} \sigma_{0} \mid \sigma \in G\right\}$, and

$$
\begin{aligned}
& \text { et } G_{0} \sigma_{0}=\{ \\
& V_{\sigma_{0}(1)}, \ldots V_{\sigma_{0}}(k+l)=\omega_{1}, \ldots, \omega_{k+l} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Then } \\
& \sum_{\sigma \in G \cdot \sigma_{0}} \operatorname{sgn} \sigma \cdot S\left(V_{\sigma(1)} \cdot \ldots, V_{\sigma(k)}\right) \\
& =\left[\operatorname{sgn} \sigma_{0} \cdot \sum_{\sigma^{\prime} \in G} \operatorname{sgn} \sigma^{\prime} S\left(W_{\sigma^{\prime}(1)} \ldots W_{\sigma^{\prime}(k)}\right)\right. \\
& \cdot T\left(\omega_{k+1}, \ldots, \omega_{k+l}\right) \\
& =0 .
\end{aligned}
$$

(Note that $G \cap G \cdot \sigma_{0}=\varnothing$).
(2) We have

$$
\begin{aligned}
& \operatorname{Alt}(\operatorname{Alt}(\eta \otimes \theta)-n \otimes \theta) \\
& =\operatorname{Alt}(\eta \otimes \theta)-\operatorname{Alt}(\eta \otimes \theta)
\end{aligned}
$$

\Rightarrow By (1), we have

$$
\begin{aligned}
0= & \operatorname{Alt}(w \otimes \\
= & {[\operatorname{Alt}(n \otimes \theta)-n \otimes \theta]) } \\
& -\operatorname{Alt}(n \otimes \theta)) \\
& -\operatorname{Al\otimes } \otimes \otimes \theta)
\end{aligned}
$$

(3) $(\omega \wedge \eta) \wedge \theta$

$$
\begin{aligned}
& =\frac{(k+l+m)!}{(k+l)!m!} A 1 t((\omega \wedge n) \otimes \theta) \\
& =\frac{(k+l+m)!}{(k+l)!m!} \frac{(k+l)!}{k!l!} A 1 t(\omega \otimes \eta \otimes \theta)
\end{aligned}
$$

We denote both $\omega \wedge(\eta \wedge \theta)$ and ($\omega \wedge \eta$) $\wedge \theta$ by $\omega \wedge \eta \wedge \theta$.
Higher-order products are denoted by $\omega_{1} \wedge \omega_{2} \wedge \ldots \wedge \omega_{\text {. }}$.
Theorem The set of all

$$
\varphi_{i_{1}} \wedge \ldots \wedge \varphi_{i_{k}} 1 \leq i_{1}<i_{2}<\ldots<i_{k} \leqslant n
$$

is a basis for $\Lambda^{k}(V)$.
Consequently,

$$
\operatorname{dim} \Lambda^{k}(v)=\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Theorem. Net v_{1}, \ldots, v_{n} be a basis for V, and let $\omega \in \Lambda^{n}(v)$. If $w_{i}=\sum_{j=1}^{n} a_{i j} v_{j}$ for $1 \leq i \leq n$, then:

$$
\omega\left(w_{1}, \ldots w_{n}\right)=\operatorname{det}\left(a_{i j}\right) \omega\left(v_{1}, \ldots, v_{n}\right)
$$

Proof. Define $\eta \in \operatorname{Jg}^{n}\left(\mathbb{R}^{n}\right)$ by

$$
\begin{aligned}
& \eta\left(\left(a_{11}, \ldots, a_{1 n}\right), \ldots,\left(a_{n 1}, \ldots, a_{n n}\right)\right) \\
& \quad=\omega\left(\sum_{a_{1 j} v_{j}} . . ., \sum_{a_{n j}} v_{j}\right)
\end{aligned}
$$

Then $\eta \in \Lambda^{n}\left(\mathbb{R}^{n}\right)$ and

$$
\begin{aligned}
\eta & =\eta\left(e_{1}, \ldots, e_{n}\right) \cdot \operatorname{det}\left(a_{i j}\right) \\
& =\omega\left(v_{1}, \ldots v_{n}\right) \cdot \operatorname{det}\left(a_{i j}\right)
\end{aligned}
$$

Remark. By theorem, a nonzero $\omega \in \Lambda^{n}(v)$ splits bases of V into two groups:
(a) Those with $\omega\left(v_{1}, \ldots, v_{n}\right)<0$
(b) Those with $\omega\left(v_{1}, \ldots, v_{n}\right)>0$.

Two bases v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{n} are in the same group if given $\omega_{i}=\sum a_{i j} v_{j}$, then $\operatorname{det}\left(a_{i j}\right)>0$.

Defy. Either of these two groups is called an orientation for V.

In \mathbb{R}^{n}, the usual orientation is $\left[e_{1}, \ldots, e_{n}\right]$.
Remark. (a) Note that $\operatorname{dim} \Lambda^{n}\left(\mathbb{R}^{n}\right)=1$. In fact. det is often seenas the unique $\omega \in \Lambda^{n}\left(\mathbb{R}^{n}\right)$ such that $w\left(e_{1}, \ldots, e_{n}\right)=1$
Why? Suppose that T is an inner product and $v_{1}, \ldots v_{n} ; w_{1}, \ldots w_{n}$
are two bases which are orthonormal with respect to T with $w_{i}=\sum_{j=1}^{n} a_{i j} V_{j}$.

Then

$$
\begin{aligned}
& \text { Then } \\
& \begin{aligned}
\delta_{i j}=T\left(w_{i}, w_{j}\right) & =\sum_{k, l=1}^{n} a_{i k} a_{j l} T\left(v_{k}, v_{l}\right) \\
& =\sum_{k=1}^{n} a_{i k} a_{j k} \\
\Rightarrow A \cdot A^{T}=I & \Rightarrow \operatorname{det}(A)= \pm 1
\end{aligned}
\end{aligned}
$$

By theorem, if $\omega \in \Lambda^{n}(v)$ satisfies $\omega\left(v_{1}, \ldots, v_{n}\right) \pm 1$, then $\omega(w, \ldots, w n)= \pm 1$.
If an orientation μ for V has been given,
then $F!w \in \Lambda^{n}(V)$ such that $w\left(V_{1}, \ldots, V_{n}\right)=1$, whenever V_{1}, \ldots, V_{n} is an orthormal basis such that $\left[v_{1}, \ldots, v_{n}\right]=\mu$.
Defy.
This unique w is called the volume element of V, determined by T and μ.
Example dec is the volume element of \mathbb{R}^{n} with $\langle>$ and $\left[e_{1}, \ldots, e_{n}\right]$.
In fact, $\left|\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)\right|=$ volume of parallelopiped spanned by v_{1}, \ldots, v_{n}.

Defer. Let $v_{1}, \ldots, v_{n-1} \in \mathbb{R}^{n}$ and φ is defined by

$$
\varphi(w)=\operatorname{det}\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n-1} \\
w
\end{array}\right)
$$

Then $\varphi \in \Lambda^{\prime}\left(\mathbb{R}^{n}\right)$ and $\exists!z \in \mathbb{R}^{n}$ such that

$$
\begin{aligned}
& \text { that } \\
& \langle\omega, z\rangle=\varphi(w)=\operatorname{det}\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n-1} \\
\omega
\end{array}\right)
\end{aligned}
$$

This z is denoted by vix..xvn-1 and is called the cross-product of V_{1}, \ldots, V_{n-1}.
Lemma $(a) V_{\sigma(1)} \times \ldots \times V_{\sigma(n-1)}$

$$
\begin{aligned}
& \text { (1) } \times \cdots \times V_{\sigma(n-1)} \\
& =\operatorname{sgn} \sigma \cdot\left(V_{1} \times \cdots \times V_{n-1}\right)
\end{aligned}
$$

(b) $v_{1} x \cdots x a v_{i} x \cdots v_{n-1}=a \cdot\left(v_{1} x \cdots x v_{n}\right)$
(c)

$$
\begin{aligned}
v_{1} \cdots & \times\left(v_{i}+v_{i}\right) \\
= & v_{1} \times \cdots v_{n-1} \\
& +v_{1 x} \times \cdots \times v_{n-1} \times \cdots \times v_{n-1}
\end{aligned}
$$

Vector fields and Differential forms
Detn. For $p \in \mathbb{R}^{n}$, the tangent space of \mathbb{R}^{n} at P is defined by $\mathbb{R}_{p}^{n}=\left\{(p, v): v \in \mathbb{R}^{n}\right\}$.
Remark.
\mathbb{R}_{p}^{n} is a vector space with respect to:

$$
\begin{aligned}
& \text { et to: } \\
& \begin{aligned}
(p, v)+(p, w) & =(p, v+w) \\
a \cdot(p, v) & =(p, a v)
\end{aligned}
\end{aligned}
$$

Given p and $v \in \mathbb{R}_{p}^{n}$, we write $V_{p}=(v, P)$ and visualize it as a vector from the point p to $p+v$

The standard inner product \langle. on \mathbb{R}^{n} induces an inner product $\left.L_{1}\right\rangle_{p}$ on \mathbb{R}_{p}^{n} define by $\left\langle u p, v_{p}\right\rangle_{p}=\langle u, v\rangle$

Defn. A vector field is a function $F: \mathbb{R}^{n} \longrightarrow \bigcup_{x \in \mathbb{R}^{n}} \mathbb{R}^{n} x$ such that $F(x) \in \mathbb{R}_{p}^{n}$, for each $p \in \mathbb{R}^{n}$.

Remark.
For each $p \in \mathbb{R}^{n}, \exists F_{1}(p), \ldots, F_{n}(p)$ such that
$F(p)=\sum_{i=i}^{n} F_{i}(p)\left(e_{i}\right)_{p}$, where the F_{i} are the component functions.

Defer A vector field F is continuous (resp. diff) if each $F i$ is continuous (resp. diff).
Defn: If F, G are vector fields, and f is a function, we define:
(a) $(F+G)(p)=F(p)+G(p)$
(b) $\langle F, G\rangle(p)=\langle F(p), G(p)\rangle$
(c) $(f \cdot F)(p)=f(p) F(p)$

Defoe. If $F_{i}, 1 \leq i \leq n$, are vector fields, we define:

$$
\left(F_{1} \times \cdots \times F_{n-1}\right)(p)=F_{1}(p) \times \cdots \times F_{n-1}(p)
$$

Defn We define the divergence of a vector field F by

$$
\operatorname{div}(F)=\sum_{i=1}^{n} D_{i} F_{i}
$$

In symbols, if $\nabla=\sum_{i=1}^{n} D_{i} \cdot e_{i}$, then $\operatorname{div}(F)=\langle\nabla, F\rangle$
Defoe. Under this symbolism, we define the curl of F as the vector field

$$
\begin{aligned}
& \text { as the vector field } \\
& (\nabla \times F)(p)=\left|\begin{array}{ccc}
\left(e_{1}\right)_{p} & \left(e_{2}\right)_{p} & \left(e_{3}\right)_{p} \\
D_{1} & D_{2} & D_{3} \\
F_{1} & F_{2} & F_{3}
\end{array}\right|
\end{aligned}
$$

Defy. A function

$$
\omega: \mathbb{R}^{n} \longrightarrow \bigcup_{x \in \mathbb{R}^{n}} \Lambda^{k}\left(\mathbb{R}_{x}^{n}\right)
$$

Such that $\omega(p) \in \Lambda^{k}\left(\mathbb{R}_{p}^{n}\right)$, for each $p \in \mathbb{R}^{n}$ is called a differentiable k-form on \mathbb{R}^{n}
If $\varphi_{1}(p), \ldots, \varphi_{n}(p)$ is a dual basis to $\left(e_{1}\right)_{p}, \ldots,\left(e_{n}\right)_{p}$, then

$$
\omega(p)=\sum_{i_{k} \ldots<i_{k}} \omega_{i_{1} \ldots i_{k}(p) \cdot\left[\varphi_{i_{1}}(p) \wedge \ldots \wedge \varphi_{i_{k}}(p)\right]}
$$

Remark a The operations $\omega+\eta, f \cdot \omega$. $\omega \wedge \eta$ are well-defined.
(b) A function f is considered to kea o-form.

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, then $D f(p) \in \wedge^{\prime}\left(\mathbb{R}^{n}\right)$. So we define $d f$ by:

$$
d f(p)\left(v_{p}\right)=D f(p)(v)
$$

For any $x=\left(x_{1}, \ldots, x n\right) \in \mathbb{R}^{n}$, let

$$
x \stackrel{\pi_{i}}{\longmapsto} x_{i}
$$

Then

$$
d x_{i}(p)\left(v_{p}\right)=d \pi_{i}(p) v_{p}=D \pi_{i}(p)(v)
$$

(Here we view x_{i} as π_{i}) $=v_{i}$
So, $d x_{1}(p), \ldots, d x_{n}(p)$ is a dual
basis to $\left(e_{1}\right) p, \ldots,\left(e_{n}\right) p$.
Thus, every k-form can be written
as

$$
w=\sum_{i_{1}<\ldots<i_{k}} w_{i_{1} \ldots l_{k}} d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}}
$$

Theorem. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, then

$$
d f=D_{1} f \cdot d x_{n}+\cdots+D_{n} f \cdot d x_{n}
$$

i.e. in classical notation,

$$
\begin{aligned}
& d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\cdots+\frac{\partial f}{\partial x_{n}} d x n \\
& \left(d x_{1}(p)=d \pi_{i}(p)\right)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
d f_{p}\left(v_{p}\right) & =D f(p)(v) \\
& =\sum_{i=1}^{n} v_{i} D_{i} f(p) \\
& =\sum_{i=1}^{n} d x_{i}(p) v_{p} \cdot D_{i} f(p)
\end{aligned}
$$

Consider $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ and
$D f(p): \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$. Then
$f_{*}: \mathbb{R}_{p}^{n} \rightarrow \mathbb{R}_{f(p)}^{m}$ is defined by

$$
f_{*}(v p)=(D f(p)(v))_{f(p)} .
$$

This linear map induces a linear map

$$
f^{*}: \Lambda^{k}\left(\mathbb{R}_{f(p)}^{m}\right) \rightarrow \Lambda^{k}\left(\mathbb{R}_{p}^{n}\right)
$$

If w is a k-form on \mathbb{R}^{m} we define a k-form $f^{*} w$ on \mathbb{R}^{n} by:

$$
\left(f^{*} \omega\right)(p)=f^{*}(\omega(f(p))
$$

i.e. if $v_{1}, \ldots, v_{k} \in \mathbb{R}_{p}^{n}$, then

$$
\begin{aligned}
\left(f^{*} w\right)(p) & \left(v_{1}, \ldots, v_{k}\right) \\
& =w(f(p))\left(f_{*}\left(v_{1}\right), \ldots, f_{*}\left(v_{k}\right)\right)
\end{aligned}
$$

Theorem. If $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is differentiable, then:
(a)

$$
\begin{aligned}
f^{*}\left(d x_{i}\right) & =\sum_{j=1}^{n} D_{j} f_{i} \cdot d x_{j} \\
& =\sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}} d x_{j}
\end{aligned}
$$

(b) $f^{*}\left(\omega_{1}+w_{2}\right)=f^{*}\left(\omega_{1}\right)+f^{*}\left(\omega_{2}\right)$
(c) $f^{*}(g \cdot w)=(g \circ f) \cdot f^{*} w$
(d) $f^{*}(\omega \wedge \eta)=f^{*} \omega \wedge f^{*} \eta$

Proof

$$
\begin{aligned}
& \text { (a) } \\
& =\left(d x_{i}\right)(p)\left(v_{p}\right)=d x_{i}(f(p))\left(f_{*} v_{p}\right) \\
& =\sum_{j=1}^{n} v_{j} D_{j} f_{i}(p)\left(\sum_{j=1}^{n} v_{j} D_{j} f_{1}(p) \sum_{j=1}^{n} v_{j} D_{j} f_{m}(p)\right)_{f(p)} \\
& =\sum_{j=1}^{n} D_{j} f_{i}(p) \cdot d x_{j}(p)\left(v_{p}\right)
\end{aligned}
$$

Theorem. If $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is differentiable, then

$$
\begin{aligned}
& f^{*}\left(h d x_{1} \wedge \ldots \wedge d x_{n}\right) \\
& \quad=(h \circ f)\left(\operatorname{det} f^{\prime}\right) d x_{1} \wedge \ldots \wedge d x_{n}
\end{aligned}
$$

Proof. Since

$$
\begin{aligned}
& f^{*}\left(h d x_{1} \wedge \ldots \wedge d x_{n}\right) \\
& =(h \circ f) f^{*}\left(d x_{1} \wedge \ldots \wedge d x_{n}\right),
\end{aligned}
$$

it suffices to show that

$$
f^{*}\left(d x_{1} \wedge \cdot \wedge d x_{n}\right)=\operatorname{det}(D f) d x_{1} \wedge \ldots \wedge d x_{n}
$$

let $p \in \mathbb{R}^{n}$ and let $A=\left(a_{i j}\right)=D f(p)$
Then

$$
\begin{aligned}
& f^{*}\left(d x_{1} \wedge \ldots \wedge d x_{n}\right)\left(e_{1}, \ldots, e_{n}\right) \\
& \quad=d x_{1} \wedge \ldots \wedge d x_{n}\left(f_{*} e_{1}, \ldots, f_{*} e_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =d x_{1} \wedge \ldots \wedge d x_{n}\left(\sum_{i=1}^{n} a_{i 1} e_{i}, \ldots, \sum_{i=1}^{n} a_{i n} e_{i}\right) \\
& =\operatorname{det}\left(a_{i j}\right) \cdot d x_{1} \wedge \ldots \wedge d x_{n}\left(e_{1}, \ldots, e_{n}\right)
\end{aligned}
$$

Defn Given the k-form

$$
w=\sum_{i_{1}<\cdots<i_{k}} \omega_{i_{1} \ldots i_{k}} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}} \text {, }
$$

we define a $(k+1)$-form $d w$, the differential of w, by

$$
\begin{aligned}
& d w=\sum_{i_{1}<\ldots<i_{k}} d w_{i_{1} \ldots i_{k}} \wedge d x_{i_{1} \wedge} \wedge . . d x_{i_{k}} \\
&=\sum_{i_{1}<\ldots<i_{k}} \sum_{\alpha=1}^{n} D_{\alpha}\left(w_{i_{1}, \ldots, i_{k}}\right) \cdot d x_{\alpha} \\
& \wedge d x_{i_{1}} \wedge \cdots d x_{i_{k}}
\end{aligned}
$$

Theorem.
(i) $d(w+\eta)=d w+d n$
(ii) If ω is a k-form and η is a 1 -form, then

$$
d(w \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta \text {. }
$$

(iii) $d(d \omega)=0$ (ie. $d^{2}=0$)
(iv) If w is a k-form on \mathbb{R}^{m} and $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is diff, then $f^{*}(d \omega)=d\left(f^{*} \omega\right)$.

Detn. A form ω is closed if $d \omega=0$ and exact if $\omega=d \eta$, for some η.
Remark (i) By theorem, every exact form is closed.
Conversely, if $\omega=P d x+Q d y$ is a 1 -form in \mathbb{R}^{2}, then

$$
\begin{aligned}
d w= & \left(D_{1} P d x+D_{2} P d y\right) \wedge d x \\
& +\left(D_{1} O_{1} d x+D_{2} Q d y\right) \wedge d y \\
= & \left(D_{1} Q-D_{2} P\right) d x \wedge d y
\end{aligned}
$$

So, if $d w=0$, then

$$
D_{1} Q=D_{2} P .
$$

Ja function f such that

$$
\begin{aligned}
& \text { Ja function } f \text { such that } \\
& \omega=d f=D_{1} f d x+D_{2} f d y \text {. }(H W)
\end{aligned}
$$

(ii) However, if ω is defined only on a subset of \mathbb{R}^{2} For example, consider

$$
\omega=-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y
$$

on $\mathbb{R}^{2}-\{0\}$
Then $\omega=d \theta$, where

$$
\begin{aligned}
& \text { Then } \omega=d \theta, \text { where } \\
& \theta(x, y)= \begin{cases}\tan ^{-1}(y / x) & x, y>0 \\
\pi+\tan ^{-1}(y / x) & x<0 \\
2 \pi+\tan ^{-1}(y / x) & x>0, y<0 \\
\pi / 2 & x=0, y>0 \\
3 \pi / 2 & x=0, y<0\end{cases}
\end{aligned}
$$

which is not continuous on $\mathbb{R}^{2}-\{0\}$.

If $\omega=d f$, for some $f: \mathbb{R}^{2}-0 \rightarrow \mathbb{R}$, then $D_{1} f=D_{1} \theta$ and $D_{2} f=D_{2} \theta$ $\Rightarrow f=\theta+c \Rightarrow f$ cannot exist.
(iii) Suppose that $\omega=\sum_{i=1}^{n} \omega_{i} d x_{i}$ is a 1 -form on \mathbb{R}^{n} and

$$
w=d f=\sum_{i=1}^{n} D_{i} f \cdot d x_{i}
$$

Since

$$
\begin{aligned}
f(x) & =\int_{0}^{1} \frac{d}{d t} f(t x) d x \\
& =\int_{0}^{1} \sum_{i=1}^{n} D_{i} f(t x) \cdot x_{i} d t \\
& =\int_{0}^{1} \sum_{i=1}^{n} \omega_{i}(t x) \cdot x_{i} d t
\end{aligned}
$$

This suggests:

$$
\begin{aligned}
& \text { suggests: } \\
& I_{\omega}(x)=\int_{0}^{1} \sum_{i=1}^{n} \omega_{i}(t x) \cdot x_{i} d t
\end{aligned}
$$

This is well-defined on a open set $A \subset \mathbb{R}^{n}$ such that if $x \in A$, then the line joining 0 to x is in A. Such an open set is called star-shaped with respect to 0 .

It can be shown that $\omega=d\left(I_{\omega}\right)$, provided that $d w=0$.

Theorem (Poincare Lemma). If $A \subset \mathbb{R}^{n}$ is an open set estar-shaped with respect to 0 , then every closed form on A is exact.
Proof. We will define a function I from l-forms to $(l-1)$-forms such that:

$$
I(0)=0 \text { and } \omega=\frac{I(d \omega)+d(I \omega)}{T h e n}
$$

for any form ω. Then

$$
\omega=d(I \omega) \text {, if } d \omega=0 \text {. }
$$

let $\omega=\sum_{i_{1}<\ldots<i l} \omega_{i_{1}}, \ldots i_{l} d x_{i_{1}} \ldots \cdot \wedge d x_{i_{l}}$
Since A is star shaped, we define:

$$
\begin{aligned}
& I \omega(x)= \sum_{i_{1}<\cdots \alpha i_{\ell} \alpha=1} \\
& \sum_{1}^{x}(-1)^{\alpha-1} \\
&\left(\int_{0}^{1} t^{\ell-1} \omega_{i_{1}, \ldots i_{l}}(t x) d t\right) x^{i_{\alpha}} \\
& d x_{i_{1}} \wedge \ldots \wedge d x_{i_{2}} \wedge \cdots \wedge d x_{i_{l}}
\end{aligned}
$$

Showing that

$$
\omega=I(d \omega)+d(I \omega) \text { is }
$$ left as an exercise

Geometric Properties
Defn. A singularn-cube in $A \subset \mathbb{R}^{n}$ is a continuous function $c:[0,7]^{n} \longrightarrow A$.
Example
(a) A singular 0 -cube is an $f:\{0\} \longrightarrow A$.
(b) The standard n-cube in \mathbb{R}^{n} is $I^{n}:[0,]^{n} \rightarrow \mathbb{R}^{n}$ defined by $I^{n}(x)=x, \forall x$.

Deft. A formal sum of the form $\sum_{i=1}^{k} a_{i} c_{i}$, where $a_{i} \in \mathbb{Z}$ and each C_{i} is a singular n-cube in A is called an n-chain in A.

Defn. (a) For each $i, 1 \leqslant i \leqslant n$, we define two singular $(n-1)-c u b e s$ $I_{(i, 0)}^{n}$ and $I_{(i, 1)}^{n}$ as follows:

$$
\begin{aligned}
I_{(i, 0)}^{n}(x): & =I^{n}\left(x_{1}, \ldots, x_{i-1}, 0, x_{i}, \ldots, x_{n-1}\right) \\
& =\left(x_{1}, \ldots, x_{i-1}, 0, x_{i}, \ldots, x_{n-1}\right) \\
I^{n}(i, 1)(x): & =I^{n}\left(x_{1}, \ldots, x_{i-1}, x_{i}, \ldots, x_{n-1}\right) \\
& =\left(x_{1}, \ldots, x_{i-1}, 1, x_{i}, \ldots, x_{n-1}\right)
\end{aligned}
$$

$I_{(i, 0)}^{n}$ and $I_{(i, 1)}^{n}$ are called the $(i, 0)$-face and $(i, 1)$-face of I^{n}. respectively.
(b) We define

$$
\begin{aligned}
& \text { Ne define } \\
& \left.\partial I^{n}=\sum_{i=1}^{n} \sum_{\alpha=0,1}(-1)^{i+\alpha} I_{(i, \alpha)}^{n}\right) \text { ar }
\end{aligned}
$$

(C) For a general singular n-cube $C:[0,1]^{n} \longrightarrow A$, we define $C_{(i, \alpha)}=\operatorname{co}\left(I_{(i, \alpha)}^{n}\right)$
Then we define,

$$
\partial c=\sum_{i=1}^{n} \sum_{\alpha=0,1}(-1)^{i+\alpha} c(i, \alpha)
$$

(d) Finally, we define the Boundary of the n-chain
$\sum a_{i} c_{i}$ by:

$$
\partial\left(\sum a_{i} c_{i}\right)=\sum a_{i} \partial\left(c_{i}\right)
$$

Theorem. If c is a chain in A, then $\partial(\partial c)=0$. Briefly, $\partial^{2}=0$.
Proof. For $i \leqslant j$ and x $\in[0,1]^{n-2}$, we have:

$$
\begin{array}{r}
\left(I_{(i, \alpha)}^{n}\right)_{(j, \beta)}(x)=I_{(i, \alpha)}^{n}\left(I_{(j, \beta)}^{n-1}(x)\right) \\
=\frac{I_{(i, \alpha)}^{n}\left(x_{1}, \ldots, x_{j-1}, \beta, x_{j}, \ldots x_{n-2}\right)}{} \begin{array}{r}
n \\
I^{n}\left(x_{1}, \ldots x_{i-1}, \alpha, x_{i}, \ldots, x_{j-1},\right. \\
\left.\beta, x_{j}, \ldots x_{n-2}\right)
\end{array}
\end{array}
$$

Similarly,

$$
\begin{aligned}
& \left(I^{n}(j+1, \beta)\right)(i, \alpha) \\
& =I^{n}\left(x_{1,}, \cdot x_{i-1}, \alpha, x_{i}, \ldots, x_{j-1}, \beta,\right. \\
& \left.x_{j,}, \cdots, x_{n-2}\right) \\
& \Longrightarrow\left(I_{(i, \alpha)}^{n}\right)_{(j, \beta)}=\left(I_{j+1, \beta)}^{n}\right)(i, \alpha),
\end{aligned}
$$

for $i \leq j$.
Thus, it follows easily that:

$$
\left(C_{(i, \alpha)}\right)_{j, \beta)}=\left(C_{(j+1, \beta)}\right)(i, \alpha) \text {, for }
$$

Now,

$$
\partial(\partial c)=\partial\left(\sum_{i=1}^{n} \sum_{\alpha=0,1}(-1)^{i+\alpha} C_{(i, \alpha)}\right)
$$

$$
\begin{gathered}
=\sum_{i=1}^{n} \sum_{\alpha=0,1} \sum_{j=1}^{n-1} \sum_{\beta=0,1}(-1)^{i+\alpha+j+\beta}(C(i, \alpha))_{(i, \beta)} \\
=0 \quad(\text { check! })
\end{gathered}
$$

Remark. If $\partial c=0$, does $\exists a$ d in A such that $c=\partial d$.

Answer. no
Consider $\left.C:[0,1] \longrightarrow \mathbb{R}^{2}-20\right\}$ by $c(t)=(\cos (2 \pi n t), \sin (2 \pi n t))$, where $n \in \mathbb{Z}-\{0\}$. Then $c(1)=c(0)$, so $\partial c=0$. But \exists no 2-chain c^{\prime} in $\mathbb{R}^{2}-0$ such that $\partial c^{\prime}=c$.

Stoke's Theorem
If ω is a k-form on $[0,1]^{k}$, then Ja unique f such that:

$$
\omega=f d x_{1} \wedge \ldots \wedge d x_{k}
$$

Defy. We define

$$
\int_{[0,1] k} \omega=\int_{[0,1 k} f=\int_{[0,1]^{k}} f\left(x_{1}, \ldots, x_{k}\right) d x_{1} \cdots d x_{k}
$$

If w is a k-form on A and c is a singular k-cube in A. we define

$$
\int_{c} \omega=\int_{[0,1]} c^{*} \omega
$$

Remark (a) In particular, we have:

$$
\begin{aligned}
\int_{I^{k}} f d x_{1} \wedge \ldots \wedge d x_{k} & =\int_{[0,1]^{k}}\left(I^{k}\right)^{*}\left(f d x_{1} \wedge \ldots \wedge d x_{k}\right) \\
& =\int_{[0,1]^{k}} f\left(x_{1}, \ldots, x_{k}\right) d x_{1} \ldots d x_{k}
\end{aligned}
$$

(b) When $k=0$, a 0 -form w is a function and $c:\{0\} \longrightarrow A$ is a singular 0 -cube in A. So, we define:

$$
\int_{c} \omega=\omega(c(0))
$$

The integral w over a k-chain $c=\sum a i c i$ is defined by:

$$
\int_{c} \omega=\sum a i \int_{c_{i}} \omega
$$

(C) The integral of a 1-form over a 1-chain is often called a line integral.
If $P d x+Q d y$ is a 1 -form on \mathbb{R}^{2} and $c:[0,1] \rightarrow \mathbb{R}^{2}$ is a singular 1 -cube(curve), then it can be shown that:

$$
\begin{aligned}
& \int_{c} P d x+Q d y \\
& =\lim _{i=1}^{n}\left(c_{1}(t i)-c_{1}(t i-1)\right) \cdot P(c(t i)) \\
& \quad+\left(c_{2}(t i)-c_{2}(t i-1)\right) \cdot Q(c(t i))_{1}
\end{aligned}
$$

where t_{0}, \ldots, t_{n} is a partition of $[0,1]$ and the \lim is taken over all partitions.

Theorem (stoke's Theorem). If ω is a (k-1)-form on an open set $A \subset \mathbb{R}^{n}$ and c is a k-chain in A, then:

$$
\int_{c} d w=\int_{\partial c} w \text {. }
$$

Proof. Suppose that $c=I k$ and w is a $(k-1)$-form on $[0,1]^{k}$. Then ω is the sum of $(k-1)$-forms of the type:

$$
f d x_{i} \wedge \ldots \cdot d x_{i} \wedge \ldots \wedge d x_{k}-(*)
$$

So it suffices to show the theorem for forms of the type (*).

Note that

$$
\begin{aligned}
& \int_{0,1]} I_{k-1}^{k}(j, a)^{*}\left(f d x_{1} \wedge \ldots \wedge d x_{i} \wedge \ldots \wedge d x_{k}\right) \\
& \quad=\left\{\begin{array}{l}
0 \\
\int_{[0, j k} f\left(x_{1}, \ldots, \alpha, \ldots, x_{k}\right) d x_{1} \ldots d x_{k},
\end{array} \quad \text { if } j \neq i\right.
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \int_{\partial I^{k}} f d x_{1} \wedge \ldots \wedge d \hat{x}_{i} \ldots \wedge d x_{k} \\
& =\sum_{j=1}^{k} \sum_{\alpha=0,1}(-1)^{j+\alpha} \int_{[0,]^{k-1}} I_{(j, x)}^{k}\left(f d x_{1} \wedge \ldots d x_{i}\right. \\
& \left.=(-1)^{i+1} \int_{\left[0, \eta^{k}\right.} f\left(x_{1}, \ldots, 1, \ldots, x_{k}\right) d x_{1} \ldots . . . d x_{k}\right) \\
& \quad+(-1)^{i} \int_{[0,1]} f\left(x_{1}, \ldots, 0, \ldots x_{k}\right) d x_{1} \ldots d x_{k}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \int_{I^{k}} d\left(f d x_{1} \wedge \ldots \wedge d x_{i} \wedge \ldots \wedge d x_{k}\right) \\
& \quad=\int_{\left[0, \eta^{k}\right.} D_{i} f d x_{i} \wedge d x_{1} \wedge \ldots \wedge d \hat{x}_{i} \wedge \ldots \wedge d x_{k} \\
& \quad=(-1)^{i-1} \int_{[0,1] k} D_{i} f
\end{aligned}
$$

By Fubinis theorem and FTC, we have

$$
\begin{aligned}
& \text { have } \\
& \int_{I^{k}} d\left(f d x_{1} \wedge \ldots \wedge \hat{d}_{i} \wedge \ldots \wedge d x_{k}\right) \\
& =(-1)^{i-1} \int_{0}^{1} \ldots\left(\int_{0}^{1} D_{i} f\left(x_{1}, \ldots, x_{k}\right) d x_{i}\right) \\
& =(-1)^{i-1} \int_{0}^{1} \ldots \int_{0}^{1}\left[f\left(x_{1}, \ldots, 1, \ldots, x_{k}\right)\right. \\
& \\
& \left.-f\left(x_{1}, \ldots, 0, \ldots, x_{k}\right)\right] \\
& d x_{1}, \ldots d x_{i} \ldots d x_{k}
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{i-1} \int_{[0,)^{k}} f\left(x_{1}, \ldots 1, \ldots, x_{k}\right) d x_{1} \ldots d x_{k} \\
& +(-1)^{i} \int_{[0,]^{k}} f\left(x_{1}, \ldots, 0, \ldots x_{k}\right) d x_{1} \ldots d x_{k}
\end{aligned}
$$

Thus, $\int_{I^{k}} d \omega=\int_{\partial I^{k}}^{\omega}$
For an arbitrary k-cube, it follows that:

$$
\int_{\partial c} \omega=\int_{\partial I^{k}}^{c^{*} \omega}
$$

Therefore,

$$
\begin{aligned}
& \text { fore, } \\
& \begin{aligned}
\int_{c} d \omega=\int_{I^{k}} c^{*}(d \omega) & =\int_{I^{k}} d\left(c^{*} \omega\right) \\
& =\int_{\partial I^{k}} c^{*} \omega=\int_{\partial c} \omega
\end{aligned}
\end{aligned}
$$

Finally, if c is a k-chain Zaici, then

$$
\begin{aligned}
\int_{c} d \omega=\sum a_{i} \int_{c_{i}} d \omega & =\sum a_{i} \int_{\partial c_{i}} \omega \\
& =\int_{\partial c} \omega
\end{aligned}
$$

